To the Reader:

This report, prepared by the United States (U.S.) Department of Energy (DOE) West Valley Demonstration Project (WVDP), summarizes the environmental protection program at the WVDP for calendar year 2014.

Monitoring and surveillance of the WVDP facilities are conducted to verify that public health and safety and the environment are protected. The quality assurance requirements applied to the environmental monitoring program by the DOE confirm the validity and accuracy of the monitoring data.

At the WVDP, radiological air emissions are controlled and permitted by the U.S. Environmental Protection Agency (EPA) under National Emission Standards for Hazardous Air Pollutants, Subpart H, regulations. Nonradiological liquid effluent discharges are controlled and permitted through the New York State Pollutant Discharge Elimination System. Generation, storage, and treatment of hazardous and mixed wastes are conducted in accordance with Resource Conservation and Recovery Act interim status regulations and New York State Environmental Conservation Law.

Air, surface water, groundwater, storm water, soil, sediment, and biological samples are collected and analyzed for radiological and nonradiological constituents. The resulting data are evaluated to assess effects of activities at the WVDP on the nearby public and the environment.

The calculated dose to the hypothetical critical receptor from airborne radiological emissions in 2014 was estimated to be <5.2% of the 10-millirem (mrem) EPA limit. The dose from combined airborne and waterborne radiological releases in 2014 to the same individual was estimated to be <0.55% of the 100-mrem DOE limit, verifying that dose received by off-site residents continues to be minimal.

Safety performance at the WVDP was outstanding during 2014, with the WVDP achieving one of the highest safety rankings in the DOE complex. In 2014, the employees achieved 1.2 million consecutive safe work hours without a lost-time work injury or illness, while accomplishing complex decontamination, demolition, and waste management activities.

CH2M HILL BWXT West Valley, LLC (CHBWV) continued to perform Phase 1 Decommissioning and Facility Disposition activities for DOE during 2014. The term of the Phase 1 Decommissioning and Facility Disposition contract is from August 2011 to March 2020.

If you have any questions or comments about the information in this report, please contact WVDP Communications at (716) 942-4601 or by email at Lynette.Bennett@chbwv.com. You may also complete and return the enclosed survey.

Sincerely,

Bryan C. Bower, Director
West Valley Demonstration Project
WVDP Annual Site Environmental Report

Can We Make This Report More Useful to You?

We want to make the WVDP Annual Site Environmental Report useful to its readers. Please take a few minutes to let us know if the report meets your needs. You can e-mail, fax, or mail this survey to Lynette Bennett at:

email: Lynette.Bennett@chbwv.com
fax: (716) 942-4367
mailing address: WEST VALLEY DEMONSTRATION PROJECT
10282 ROCK SPRINGS ROAD
WEST VALLEY, NY 14171

1. How do you use the WVDP Annual Site Environmental Report?
 - To learn general information about the WVDP
 - To learn about doses received for the current year
 - To learn about site compliance information
 - To gather effluent or environmental surveillance data
 - Other: ___________________________________

2. Does the WVDP Annual Site Environmental Report contain enough:
 a. Useful illustrations and graphs? □ Yes □ No
 b. Project background information? □ Yes □ No
 c. Scientific background information? □ Yes □ No
 Comments: ___________________________________

3. Is this report: (please check one)
 - At appropriate technical level?
 - Too technical? For example: ___________________________________
 - Not technical enough? For example: ___________________________________

4. If you could change this report to make it more readable and useful to you, what would you change?
 __

5. What is your affiliation?
 - U.S. DOE □ Elected official
 - NYSERDA □ Media
 - Other government office/agency □ Group: _______________________________
 - Public interest group □ Individual: _______________________________
 - Media
 - Other government office/agency
 - Public interest group

6. To help us identify our audience, please indicate your educational background.
 - Graduate degree: □ Scientific □ Nonscientific
 - Undergraduate degree: □ Scientific □ Nonscientific
 - Experience with science outside college setting
 - Little or no scientific background

If you have questions or comments about the information in this report, please contact WVDP Communications at (716) 942-4601.
Disclaimer

This report was prepared by CH2M HILL BWXT West Valley, LLC (CHBWV) under contract number DE-EM0001529 with the United States (U.S.) of America, represented by the Department of Energy. Neither the U.S. Government nor CHBWV nor any of their contractors, subcontractors, or employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. References herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or CHBWV. This report contains a summary of major or significant activities occurring at the West Valley Demonstration Project (WVDP) only and is not a full disclosure of all details associated with WVDP-related activities. The views and opinions of authors expressed in this report may not specifically state or reflect those of the U.S. Government or any agency thereof.
Preface

Environmental monitoring at the West Valley Demonstration Project (WVDP) was conducted by CH2M HILL BWXT West Valley, LLC (CHBWV)\(^1\), under contract to the United States Department of Energy. The data collected provide a historical record of radionuclide and radiation levels, and chemical data from natural and man-made sources in the survey area. The data also document the chemical and radiological quality of the groundwater on and around the WVDP and of the air and water released by the WVDP. Meteorological data are also presented.

It is the policy of CHBWV to conduct the WVDP in a safe, compliant, and cost-effective manner that protects human health and the environment. We achieve this by integrating environmental requirements and pollution prevention into our work planning and execution, and taking actions to minimize the environmental impacts of our operations. We establish and communicate environmental responsibilities, provide environmental training to our workforce, and implement controls to mitigate environmental hazards. These activities are conducted in accordance with our Environmental Management System.

This report represents a single, comprehensive source of on-site and off-site environmental data collected during 2014. The environmental monitoring program and results are discussed in the body of this report. Additional monitoring information is presented in the appendices. Appendix A contains maps of on-site and off-site sampling locations and a summary of the site environmental monitoring schedule. Appendices B through G contain summaries of data obtained during 2014 and are intended for those readers interested in more detail than is provided in the main body of the report. Appendix H contains a copy of the WVDP Act. The entire Annual Site Environmental Report (ASER) is available on compact disk (CD) and on the DOE website (http://www.wv.doe.gov). Hardcopy versions of the ASER do not include printed data tables (Appendices B through G) and the WVDP Act (Appendix H) but do include the complete report on CD inside the back cover.

A reader opinion survey has been inserted in this report. Requests for digital copies of the 2014 ASER and questions regarding the report should be referred to WVDP Communications, 10282 Rock Springs Road, West Valley, New York 14171 (telephone: 716-942-4601). Additional Project information, including links to the current and previous WVDP ASERs, is available on the internet at http://www.wv.doe.gov.

\(^1\)In April 2015, CHBWV changed it’s name from CH2MILL Babcock & Wilcox West Valley, LLC to CH2M HILL BWXT West Valley, LLC. The CHBWV acronym remained the same.
This page intentionally left blank
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>EXE-1</td>
</tr>
<tr>
<td>Purpose of This Report</td>
<td>EXE-1</td>
</tr>
<tr>
<td>Major Site Programs</td>
<td>EXE-1</td>
</tr>
<tr>
<td>Record of Decision</td>
<td>EXE-1</td>
</tr>
<tr>
<td>DOE/NYSERDA Consent Decree</td>
<td>EXE-1</td>
</tr>
<tr>
<td>Facilities Disposition Contract</td>
<td>EXE-1</td>
</tr>
<tr>
<td>Phase 1 Studies</td>
<td>EXE-4</td>
</tr>
<tr>
<td>Environmental Characterization Services Contract</td>
<td>EXE-4</td>
</tr>
<tr>
<td>Permeable Treatment Wall Performance</td>
<td>EXE-4</td>
</tr>
<tr>
<td>NRC-Licensed Disposal Area (NDA)</td>
<td>EXE-4</td>
</tr>
<tr>
<td>Waste Tank Farm (WTF) Tank and Vault Drying System (T&VDS)</td>
<td>EXE-4</td>
</tr>
<tr>
<td>Safety Success</td>
<td>EXE-5</td>
</tr>
<tr>
<td>Environmental Management System (EMS)</td>
<td>EXE-5</td>
</tr>
<tr>
<td>Compliance</td>
<td>EXE-5</td>
</tr>
<tr>
<td>Environmental Monitoring - Performance Indicators</td>
<td>EXE-5</td>
</tr>
<tr>
<td>Quality Assurance (QA)</td>
<td>EXE-6</td>
</tr>
<tr>
<td>Conclusion</td>
<td>EXE-6</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>INT-1</td>
</tr>
<tr>
<td>Site Location</td>
<td>INT-1</td>
</tr>
<tr>
<td>General Environmental Setting</td>
<td>INT-1</td>
</tr>
<tr>
<td>Climate</td>
<td>INT-1</td>
</tr>
<tr>
<td>Ecology</td>
<td>INT-1</td>
</tr>
<tr>
<td>Geology and Hydrology</td>
<td>INT-1</td>
</tr>
<tr>
<td>Relevant Demographics</td>
<td>INT-1</td>
</tr>
<tr>
<td>Historic Timeline of the WNYSNCS and the WVDP</td>
<td>INT-1</td>
</tr>
<tr>
<td>ENVIRONMENTAL COMPLIANCE SUMMARY</td>
<td>ECS-1</td>
</tr>
<tr>
<td>Compliance Program</td>
<td>ECS-1</td>
</tr>
<tr>
<td>2014 Accomplishments and Highlights at the WVDP</td>
<td>ECS-1</td>
</tr>
<tr>
<td>2014 Major Accomplishments</td>
<td>ECS-1</td>
</tr>
<tr>
<td>State Pollutant Discharge Elimination System (SPDES) Permit Noncompliance Events</td>
<td>ECS-2</td>
</tr>
<tr>
<td>Mercury Minimization Program</td>
<td>ECS-2</td>
</tr>
<tr>
<td>Permeable Treatment Wall (PTW) Performance</td>
<td>ECS-2</td>
</tr>
<tr>
<td>Waste Tank Farm (WTF) and the Tank and Vault Drying System (T&VDS)</td>
<td>ECS-3</td>
</tr>
<tr>
<td>Packaging and Transportation of Radioactive Material</td>
<td>ECS-3</td>
</tr>
<tr>
<td>National Environmental Policy Act (NEPA)</td>
<td>ECS-3</td>
</tr>
<tr>
<td>Environmental Impact Statement (EIS) Issued</td>
<td>ECS-4</td>
</tr>
<tr>
<td>Phase 1 Studies</td>
<td>ECS-4</td>
</tr>
<tr>
<td>Phase 1 Decommissioning Plan (DP) for the WVDP</td>
<td>ECS-5</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL COMPLIANCE SUMMARY (concluded)

National Environmental Policy Act (NEPA) (concluded)
 Phase 1 Characterization Sampling and Analysis Plan (CSAP) and the Phase 1 Final Status Survey Plan (FSSP) for
 the WVDP .. ECS-5
 Environmental Characterization Services Contract .. ECS-5

Resource Conservation and Recovery Act (RCRA) .. ECS-5
 Hazardous Waste Permitting - RCRA Interim Status Permit Application .. ECS-5
 RCRA Final Status Permit Application .. ECS-6
 RCRA §3008(h) Administrative Order on Consent .. ECS-6
 Hazardous Waste Management .. ECS-7
 Mixed Waste Management ... ECS-7
 Nonhazardous, Regulated Waste Management .. ECS-8
 Waste Minimization and Pollution Prevention .. ECS-8
 Construction and Demolition Debris Landfill (CDDL) Activities .. ECS-8

Environmental Issues ... ECS-8
 Unplanned Releases .. ECS-8
 Environmental Protection Agency (EPA) Approval to Use Environmental Measurements for National
 Emission Standards for Hazardous Air Pollutants (NESHAP) Compliance .. ECS-8
 Safety Inspections of the WNYNSC Dams .. ECS-9

Project Assessment Activities in 2014 .. ECS-9

CHAPTER 1. ENVIRONMENTAL MANAGEMENT SYSTEM .. 1-1

Environmental Management System (EMS) ... 1-1
 Policy and Commitment ... 1-2
 Program Planning ... 1-2
 Regulatory Compliance .. 1-2
 Potential Environmental Impacts .. 1-2
 EMS Implementation .. 1-3
 Objectives .. 1-3
 DOE Sustainability Goals .. 1-3
 EMS Incorporation into WVDP Milestones ... 1-3
 Training .. 1-4
 EMS Progress Tracking .. 1-5
 EMS Results ... 1-5
 EMS Performance Metrics for 2014 EMS Scorecard .. 1-5
 1. Energy Use and Greenhouse Gas Emissions (GHG) ... 1-5
 2. Water Use ... 1-6
 3. Vehicle Fleet Fuel Use ... 1-6
 4. Sustainable Acquisition ... 1-6
 5. Pollution Prevention and Waste Reduction ... 1-7
 6. Electronic Stewardship ... 1-8
 Checking and Feedback ... 1-8
 Evaluation of Compliance and Regulatory Requirements ... 1-8
 Environmental Quality Assurance (QA)/Quality Control (QC) Program 1-8
 Lessons Learned ... 1-9
 Management Review .. 1-9
 Summary ... 1-9
Table of Contents

CHAPTER 2. ENVIRONMENTAL MONITORING

- Monitoring Program ... 2-1
- Effluent Monitoring ... 2-1
- Environmental Surveillance ... 2-1
- Data Evaluation ... 2-1
- Waterborne Effluent Monitoring .. 2-1
- Waterborne Radiological Releases .. 2-2
- State Pollutant Discharge Elimination System (SPDES) Permit-Required Monitoring ... 2-4
- Airborne Effluent Monitoring .. 2-5
- Radiological Air Emissions .. 2-5
- Ventilation and Emission Systems .. 2-5
- The Main Plant Process Building (MPPB) Ventilation Stack ... 2-5
- Other On-Site Air Sampling Systems 2-5
- Unplanned Radiological Airborne Release 2-6
- Nonradiological Air Emissions ... 2-6
- Environmental Surveillance .. 2-7
- Ambient Air ... 2-7
- Surface Water ... 2-7
- South Plateau Surface Water .. 2-9
- North Plateau Surface Water .. 2-11
- Off-Site Surface Water .. 2-11
- Sediment and Soil ... 2-12
- Food ... 2-12
- Environmental Radiation .. 2-13
- Meteorological Monitoring .. 2-13
- Drinking Water ... 2-14
- Special Projects ... 2-14
- Monitoring Program Changes ... 2-15
- Environmental Monitoring Summary 2-15

CHAPTER 3. DOSE ASSESSMENT

- Radiation Sources at the WVDP .. 3-1
- Exposure Pathways ... 3-1
- Land Use Survey and Population Data 3-2
- Dose to the Public ... 3-2
- Dose Assessment Methodology ... 3-2
- Radiation Dose .. 3-3
- Units of Dose Measurement ... 3-3
- Dose From Airborne Emissions .. 3-4
- Maximum Dose (Airborne) to an Off-Site Individual 3-5
- Comparison of Modeled Versus Measured Dose Estimates 3-5
- Radon-220 .. 3-6
- Continuous Air Effluent Monitoring 3-6
- Collective Population Dose (Airborne) 3-7
- Predicted Dose From Waterborne Releases 3-7
- Maximum Dose (Waterborne) to an Off-Site Individual 3-9
- Collective Population Dose (Waterborne) 3-10
- Predicted Dose From All Pathways 3-10
- Calculated Dose From Food .. 3-10
CHAPTER 3. DOSE ASSESSMENT (concluded)

Risk Assessment .. 3-12
Release of Materials Containing Residual Radioactivity .. 3-12
Dose to Biota .. 3-12
Summary ... 3-15

CHAPTER 4. GROUNDWATER PROTECTION PROGRAM .. 4-1

Groundwater Monitoring Program (GMP) .. 4-1
 Groundwater Use and History .. 4-1
Geology and Hydrogeology ... 4-1
Routine Groundwater Monitoring ... 4-4
 Groundwater Monitoring Network .. 4-4
 Groundwater Elevation Monitoring .. 4-4
 Groundwater Trigger Level Evaluation ... 4-4
 Groundwater Screening Levels (GSLs) .. 4-4
North Plateau Strontium-90 Plume ... 4-8
 Monitoring at North Plateau Seeps ... 4-10
 Monitoring at the Northeast Swamp Drainage ... 4-10
Strontium-90 Plume Remediation Activities ... 4-10
 Full-Scale Permeable Treatment Wall (PTW) ... 4-10
 PTW Performance Monitoring Plan (PTWPMP) ... 4-11
North Plateau Groundwater Monitoring Plan (NPGMP) ... 4-11
PTW Protection and Best Management Plan ... 4-12
North Plateau Groundwater Recovery System (NPGRS) .. 4-12
Pilot-Scale PTW .. 4-12
Other Groundwater Sampling Observations on the North Plateau 4-12
 Monitoring Near Former Lagoon 1 .. 4-12
 Tritium in North Plateau Groundwater ... 4-12
 Radioisotopic Sampling Results on the North Plateau .. 4-12
 Results for Volatile and Semivolatile Organic Compounds (VOCs and SVOCs) 4-12
 Metals Sampling on the North Plateau ... 4-13
Groundwater Sampling Observations on the South Plateau Including the NRC-Licensed Disposal Area (NDA) ... 4-13
 Interim Measure (IM) .. 4-13
 Radioisotopic Sampling Results on the South Plateau .. 4-14
Additional Monitoring and Investigations ... 4-15
 Groundwater Monitoring Downgradient of the Waste Tank Farm (WTF) 4-15
 New WVDP Water Supply Wells .. 4-15
Summary ... 4-15

USEFUL INFORMATION ... UI-1

Radiation and Radioactivity ... UI-1
Radioactive Decay ... UI-1
Some Types of Ionizing Radiation ... UI-2
Measurement of Radioactivity ... UI-2
Measurement of Dose .. UI-3
Background Radiation .. UI-3
Potential Health Effects of Radiation .. UI-3
Data Reporting .. UI-4
Table of Contents

List of Figures

INT-1 Location of the Western New York Nuclear Service Center ... INT-2
ECS-1 Summary of Activities Under Phase 1 and Phase 2 .. ECS-4

1-1 Energy Use ... 1-5
1-2 GHG Emissions .. 1-5
1-3 Vehicle Energy Use .. 1-6

2-1 Average Gross Beta and Strontium-90 Concentrations in Surface Water on the South Plateau at WNNDADR and WNERBS3 Before and After the NDA Interim Measure (IM) was Installed ... 2-10
2-2 Average Concentration of Tritium in Surface Water at WNNDADR: 2005-2014 2-10
2-3 10-Year Trends of Environmental Radiation Levels at Perimeter and Background Thermoluminescent Dosimeters (TLDs) .. 2-13
2-4 Wind Frequency and Speed From the Meteorological Tower (10-m and 60-m Elevations) January 1-December 31, 2014 ... 2-16

3-1 Comparison of Doses From Natural and Man-Made Sources to the Dose From 2014 WVDP Effluents ... 3-1
3-2 Potential Radiation Exposure Pathways to Man ... 3-4
3-3 Historical Trends in Measured Concentrations from Primary Point Sources 3-8
3-4 Dose Percent by Radionuclide from Waterborne Releases in 2014 .. 3-10
3-5 Pathways Considered in the RESRAD Family of Codes ... 3-13

4-1 Geologic Cross Sections of the North and South Plateaus at the WVDP .. 4-3
4-3 Annual Average Gross Beta Concentrations at Monitoring Wells Downgradient of the North Plateau Strontium-90 Plume Source Area .. 4-18
4-4 Annual Average Gross Beta Concentrations at Monitoring Wells Centrally Located Within the North Plateau Strontium-90 Plume .. 4-18
4-5 Annual Average Gross Beta at Monitoring Wells Upgradient of the PTW 4-19
4-6 Annual Average Gross Beta at Monitoring Wells Downgradient of the PTW 4-19
4-7 Annual Average Gross Beta Concentrations at Seeps From the Northeast Edge of the North Plateau .. 4-20
4-8 Annual Average Strontium-90 Concentrations at WNSWAMP ... 4-20
4-9 Map View of the PTW .. 4-21
4-10 Annual Average Gross Beta Concentrations at Monitoring Wells Near Former Lagoon 1 .. 4-21
4-11 Concentrations of 1,2-DCE-t, 1,1,1-TCA, 1-1-DCA, and DCDFMeth at Well 8612 in the S&G Unit .. 4-22
4-12 Concentrations of Tributyl Phosphate at Monitoring Wells Near Former Lagoon 1 in the S&G Unit .. 4-22
4-13 Annual Average Gross Beta Concentrations at Monitoring Wells Downgradient of the NDA and at the NDA Trench ... 4-23
4-14 Volume of Water Pumped From the NDA Interceptor Trench .. 4-24

APPENDIX A. 2014 ENVIRONMENTAL MONITORING PROGRAM

A-1 West Valley Demonstration Project Base Map .. A-20
A-2 On-Site Surface Water and Soil/Sediment Sampling Locations .. A-21
A-3 On-Site Storm Water Outfalls ... A-22
A-4 Rail Spur Storm Water Outfalls .. A-23
A-5 Off-Site Surface Water and Soil/Sediment Sampling Locations ... A-24
A-6 On-Site Air Monitoring and Sampling Locations ... A-25
A-7 Off-Site Ambient Air Monitoring and Sampling Locations .. A-26
A-8 Drinking Water Supply Wells and Source Water Protection Monitoring Network A-27
APPENDIX A. 2014 ENVIRONMENTAL MONITORING PROGRAM (concluded)

A-9 North Plateau Groundwater Monitoring Network .. A-28
A-10 South Plateau Groundwater Monitoring Network .. A-29
A-11 Biological Sampling Locations .. A-30
A-12 Location of On-Site/Near-Site Thermoluminescent Dosimeters (TLDs) A-31
A-13 Location of Off-Site Thermoluminescent Dosimeters (TLDs) Within 5 Kilometers of the WVDP .. A-32
A-14 Environmental Sampling Locations More Than 5 Kilometers From the WVDP A-33
A-15 Population by Sector Within 80 Kilometers of the WVDP (2002 Estimate) A-34

List of Tables

INT-1 Historic Timeline of the WNYNSC and the WVDP .. INT-3
ECS-1 Compliance Status Summary for the WVDP in CY 2014 .. ECS-10
ECS-2 NEPA Documents Affecting DOE Activities at the WVDP ECS-19
ECS-3 WVDP Environmental Permits .. ECS-22
ECS-4 WVDP RCRA SSWMUs and Constituent SWMUs Identified in the RFI under the RCRA 3008(h) Order on Consent ... ECS-25
ECS-5 Summary of Waste Management Activities at the WVDP During 2014 ECS-27
ECS-6 WVDP 2014 Air Quality Noncompliance Episodes .. ECS-28
ECS-7 Status of EPCRA (SARA Title III) Reporting at the WVDP For CY 2014 ECS-28
ECS-8 Reportable Chemicals Above EPCRA 312 (SARA Title III) Threshold Planning Quantities Stored at the WVDP in 2014 .. ECS-28
ECS-9 WVDP SPDES Permit Limit Exceedances in 2014 .. ECS-28
ECS-10 WVDP Migratory Bird Nest Depredation Activities in Fiscal Year 2014 ECS-29

1-1 WVDP Significant Environmental Aspects for 2014 .. 1-2
1-2 Sustainability Goals Incorporated in the Processes of Deactivation and Demolition 1-4
1-3 Recycled/Reused/Donated Material in FY 2014 .. 1-7
1-4 Summary of Crosschecks Completed in 2014 .. 1-8
2-1 Total Radioactivity Discharged at Lagoon 3 (WNSP001) in 2014 and Comparison of Discharge Concentrations with DOE DCSs .. 2-2
2-2 Total Radioactivity Released at Northeast SWAMP (WNSWAMP) in 2014 and Comparison of Discharge Concentrations with DOE DCSs .. 2-3
2-3 Total Radioactivity Released at Main Plant Stack (ANSTACK) in 2014 and Comparison of Discharge Concentrations with DOE DCSs .. 2-6
2-4 2014 Comparison of Environmental Monitoring Results with Applicable Limits and Backgrounds .. 2-8
2-5 WVDP 2014 Monthly Precipitation Totals Compared with 10-Year Monthly Averages 2-14
3-1 Potential Exposure Pathways from the WVDP to the Local Off-Site Population 3-2
3-2 Summary of Annual Effective Dose Equivalents (EDEs) to an Individual and Population From WVDP Releases in 2014 .. 3-9
3-3 WVDP Radiological Dose and Release Summary .. 3-11
3-4 2014 Evaluation of Dose to Aquatic and Terrestrial Biota .. 3-14
Table of Contents

List of Tables (continued)

4-1 Highlights of Groundwater Monitoring History at the WVDP and the WNYNSC ... 4-2
4-2 Summary of Hydrogeology at the WVDP ... 4-5
4-3 WVDP Groundwater Monitoring Network Sorted by Geologic Unit ... 4-6
4-4 WVDP Groundwater Sampling and Analysis Agenda .. 4-7
4-5 2014 Groundwater Monitoring Overview by Geographic Area .. 4-7
4-6 WVDP 2014 Groundwater Monitoring Overview by Monitoring Purpose .. 4-7
4-7 2014 Maximum Concentrations of Radionuclides in Groundwater at the WVDP Compared With WVDP Groundwater Screening Levels (GSLs) .. 4-14
4-8 2014 Summary of Maximum Concentrations of Organic Constituents in Select WVDP Groundwater Wells .. 4-14
4-9 2014 Groundwater Monitoring Results Exceeding GSLs and Background Levels 4-16

USEFUL INFORMATION

UI-1 Unit Prefixes Used in this ASER .. UI-4
UI-2 Units of Measure Used in this ASER .. UI-5
UI-3 Conversion Factors Used in this ASER .. UI-5
UI-4 U.S. Department of Energy Derived Concentration Standards (DCSs) for Inhaled Air or Ingested Water (μCi/mL) ... UI-8

APPENDIX A. 2014 ENVIRONMENTAL MONITORING PROGRAM

A-1 WVDP Environmental Program Drivers and Sampling Rationale .. A-6
A-2 2014 Environmental Monitoring Program ... A-7

APPENDIX B-1. SUMMARY OF WATER LIMITS, GUIDELINES, AND STANDARDS B-1

B-1A West Valley Demonstration Project State Pollutant Discharge Elimination System (SPDES) Sampling Program .. B-1
B-1B New York State Water Quality Standards and Guidelines .. B-4
B-1C New York State Department of Health/U.S. EPA Potable Water MCLs, MCLGs, and Raw Water Standards for Surface Water Supply Source ... B-6
B-1D Department of Energy (DOE) Derived Concentration Standards (DCSs) in Ingested Water .. B-7

APPENDIX B-2. PROCESS EFFLUENT DATA .. B-9

B-2A Comparison of 2014 Lagoon 3 (WNSP001) Liquid Effluent Radioactivity Concentrations With U.S. DOE-Derived Concentration Standards (DCSs) .. B-9
B-2B 2014 SPDES Results for Outfall 001 (WNSP001): Water Quality ... B-10
B-2C 2014 SPDES Results for Outfall 001 (WNSP001): Metals .. B-13
B-2D 2014 SPDES Results for Outfall 007 (WNSP007): Water Quality and Iron B-14
B-2E 2014 SPDES Results for Sums of Outfalls 001, 007, and 116: Water Quality B-16
B-2F 2014 Annual and Semiannual SPDES Results for Outfall 001: Metals, Water Quality and Organic Compounds .. B-17
B-2G 2014 SPDES Action Level Requirement Monitoring Results for Outfalls 001 and 007 Metals and Water Quality .. B-18
B-2H 2014 SPDES Results for Outfall 01B (WNSP01B): Water Quality ... B-18
B-2I 2014 Paraquat Dichloride Data in Areas of Herbicide Application .. B-19
B-2J 2014 Radioactivity Results for Sewage Treatment Outfall (WNSP007) ... B-20
List of Tables (continued)

APPENDIX B-3. SPDES-PERMITTED STORM WATER OUTFALL DISCHARGE DATA ... B-21

B-3A 2014 Storm Water Discharge Monitoring Data for Outfall Group 1 ... B-21
B-3B 2014 Storm Water Discharge Monitoring Data for Outfall Group 2 ... B-23
B-3C 2014 Storm Water Discharge Monitoring Data for Outfall Group 3 ... B-25
B-3D 2014 Storm Water Discharge Monitoring Data for Outfall Group 4 ... B-27
B-3E 2014 Storm Water Discharge Monitoring Data for Outfall Group 5 ... B-29
B-3F 2014 Storm Water Discharge Monitoring Data for Outfall Group 6 ... B-31
B-3G 2014 Storm Water Discharge Monitoring Data for Outfall Group 7 ... B-33
B-3H 2014 Storm Water Discharge Monitoring Data for Outfall Group 8 ... B-35

APPENDIX B-4. SITE SURFACE WATER DATA ... B-37

B-4A 2014 Radioactivity and pH in Surface Water at Facility Year Drainage (WNSP005) ... B-37
B-4B Comparison of 2014 Radioactivity Concentrations in Surface Water at the North Swamp (WNSW74A) With U.S. DOE-Derived Concentration Standards (DCSs) .. B-38
B-4C Comparison of 2014 Radioactivity Concentrations in Surface Water at the Northeast Swamp (WNSWAMP) With U.S. DOE-Derived Concentration Standards (DCSs) .. B-39
B-4D 2014 Radioactivity in Surface Water Drainage Between the NDA and SDA (WNNDADR) B-39

APPENDIX B-5. AMBIENT SURFACE WATER DATA .. B-41

B-5A 2014 Radioactivity and pH in Surface Water Downstream of the WVDP in Cattaraugus Creek at Felton Bridge (WFHELBR) ... B-41
B-5B 2014 Water Quality of Surface Water Downstream of the WVDP in Buttermilk Creek at Thomas Corners Bridge (WFBCTCB), Radioactivity Concentrations .. B-41
B-5C 2014 Radioactivity of Surface Water Downstream of the WVDP at Franks Creek (WNSP006) B-44
B-5D 2014 Radioactivity and pH in Surface Water at Erdman Brook (WNERB53) ... B-44
B-5E 2014 Radioactivity and pH in Surface Water at Franks Creek (WNFRC67) .. B-45
B-5F Historical Radioactivity and pH in Surface Water at Bigelow Bridge Cattaraugus Creek Background (WFBGIBR) ... B-45
B-5G 2014 Radioactivity and pH in Surface Water at Fox Valley Road Buttermilk Creek Background (WFCBKBG) B-46

APPENDIX B-6. POTABLE WATER (DRINKING WATER) DATA .. B-47

B-6A 2014 Water Quality Results in Drinking Water at Tap Locations Inside the MPPB and RHWF B-47
B-6B 2014 Water Quality Results in Finished Water ... B-47
B-6C 2014 Water Quality Results in Raw (Untreated) Potable Water ... B-48
B-6D 2014 Biological and Chlorine Results From Potable Water at Various Site Tap Water Locations B-48
B-6E 2014 Nitrate Results From the Utility Room Raw Water ... B-48
B-6F 2014 Copper and Lead Results from On-Site Tap Water Locations at the WVDP ... B-48
B-6G 2014 Water Quality Results in Treated Potable Water .. B-49
B-6H 2014 Radiological Water Quality Results in Raw (Untreated) Potable Water ... B-51
B-6I 2014 Radiological Indicator Results from the Source Water Protection Plan Wells .. B-52
Table of Contents

List of Tables (continued)

APPENDIX C. SUMMARY OF AIR MONITORING DATA ... C-1

C-1 Total Radioactivity Released at Main Plant Stack (ANSTACK) in 2014 and Comparison of Discharge
 Concentrations with U.S. DOE-Derived Concentration Standards (DCSs) .. C-1
C-2 2014 Effluent Airborne Radioactivity at Vitrification System HVAC (ANVITSK) .. C-2
C-3 2014 Airborne Radioactivity at Contact Size-Reduction Facility (ANCSRFK) ... C-2
C-4 2014 Effluent Airborne Radioactivity at Supernatant Treatment System (ANSTSTK) ... C-3
C-5 2014 Effluent Airborne Radioactivity at Container Sorting and Packaging Facility (ANCSPFK) C-4
C-6 2014 Effluent Airborne Radioactivity at Outdoor Ventilation Enclosures/Portable Ventilation Units (OVES/PVUs) C-5
C-7 2014 Effluent Airborne Radioactivity at Remote-Handled Waste Facility (ANRHWFK) C-6
C-8 2014 Gross Alpha and Gross Beta Radioactivity at Nearsite Ambient Air Sampling Locations and at Background
 Great Valley Location (AFGRVAL) ... C-7
C-9 2014 Ambient Airborne Radioactivity and Comparison to the NESHAP Concentration Levels for Environmental
 Compliance ... C-8

APPENDIX D-1. SUMMARY OF GROUNDWATER SCREENING LEVELS AND PRACTICAL QUANTITATION LIMITS D-1

Groundwater Sampling Methodology .. D-1
Groundwater Screening Levels (GSLs) for Radiological Constituents ... D-1
Groundwater Screening Levels for Metals ... D-1

D-1A Groundwater Screening Levels (GSLs) for Radiological Constituents .. D-3
D-1B Groundwater Screening Levels for Metals .. D-4
D-1C Practical Quantitation Limits (PQLs) .. D-5

APPENDIX D-2. GROUNDWATER MONITORING DATA ... D-9

D-2A 2014 Indicator Results From the Sand and Gravel Unit ... D-9
D-2B 2014 Indicator Results From the Lavery Till-Sand Unit .. D-14
D-2C 2014 Indicator Results From the Weathered Lavery Till Unit ... D-15
D-2D 2014 Indicator Results From the Unweathered Lavery Till ... B-16
D-2E 2014 Indicator Results From the Kent Recessional Sequence ... D-17
D-2F 2014 Metals Results for Early Warning Monitoring Well 502 ... D-17
D-2G 2014 Results for Metals in Groundwater Compared With WVDP Groundwater Screening Levels D-18
D-2H 2014 Radioactivity in Groundwater From Selected Monitoring Locations .. D-22

APPENDIX E. SUMMARY OF BIOLOGICAL DATA ... E-1

E-1 2014 Radioactivity Concentrations in Milk .. E-1
E-2 2014 Radioactivity Concentrations in Venison .. E-1
E-3 2014 Radioactivity Concentrations in Food Crops .. E-1
E-4 2014 Radioactivity Concentrations in Edible Portions of Fish .. E-1

APPENDIX F. SUMMARY OF DIRECT RADIATION MONITORING DATA .. F-1

F-1 Summary of 2014 Semiannual Averages of Off-Site TLD Measurements ... F-1
F-2 Summary of 2014 Semiannual Averages of On-Site TLD Measurements ... F-2
List of Tables (concluded)

- **APPENDIX G. SUMMARY OF QUALITY ASSURANCE CROSSCHECK ANALYSES**
 - G-1 Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP); Study 30, February 2014
 - G-2 Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP); Study 31; August 2014
 - G-3 Comparisons of Results From Crosscheck Samples Analyzed for Water Quality Parameters as Part of the EPA's 2014 Discharge Monitoring Report - Quality Assurance (DMR-QA) Study 34; (2014) for the National Pollutant Discharge Elimination System (NPDES)

- **APPENDIX H. WEST VALLEY DEMONSTRATION PROJECT ACT**
This page intentionally left blank
Purpose of This Report

The Annual Site Environmental Report for the West Valley Demonstration Project (WVDP or Project) is published to provide information about environmental conditions at the WVDP to members of the public, to the United States (U.S.) Department of Energy (DOE) Headquarters, and to other interested stakeholders. In accordance with DOE Order 231.1B, “Environment, Safety, and Health Reporting,” this document summarizes calendar year 2014 environmental monitoring data, describes the performance of the WVDP’s environmental management system (EMS), confirms compliance with environmental standards and regulations, and highlights important environmental monitoring programs. WVDP activities are conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA).

Major Site Programs

The WVDP is located on the site of a former commercial nuclear fuel reprocessing plant, which shut down in 1976. In 1980, Public Law 96-368 (the WVDP Act) was passed, which authorized DOE to demonstrate a method for solidifying approximately 660,000 gallons (gal) (2.5 million liters [L]) of liquid high-level radioactive waste (HLW) that remained at the site. Solidification by vitrification (VIT) of the HLW began in 1996 and was completed in September 2002. Activities for decontaminating and dismantling the facilities and for managing and disposing of wastes were then initiated and continued through CY 2014.

Record of Decision. In April 2010, DOE released a Record of Decision (ROD) for the Final Environmental Impact Statement (FEIS) for the WVDP and the Western New York Nuclear Service Center (WNYNSC) (“Final Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center,” DOE/EIS-0226, issued on January 29, 2010), allowing for the continued decommissioning and cleanup efforts at the site using a two-part phased decisionmaking process. NYSERDA published its corresponding decision under the State Environmental Quality Review Act in a statement of findings in May 2010. In the FEIS, DOE and NYSERDA evaluated four alternatives: Site-wide Removal, Site-wide Close-In-Place, Phased Decisionmaking (the preferred alternative), and No Action. On February 25, 2010 prior to final release of the ROD, the U.S. Nuclear Regulatory Commission (NRC) transmitted to DOE-WVDP the “Technical Evaluation Report (TER) for the Phase 1 Decommissioning Plan (DP).” The TER concluded that the Phase 1 DP was consistent with the FEIS preferred alternative (Phased Decisionmaking), and also determined that there is reasonable assurance that the proposed actions in the preferred alternative will facilitate meeting the decommissioning criteria.

Under the Phased Decisionmaking Alternative, the work will be conducted in two phases. Facilities disposition actions identified under Phase 1 Site Decommissioning are being carried out under a facilities disposition contract awarded in 2011 and discussed below. Soil remediation actions will be performed under a separate Phase 1 contract following the facilities disposition contract. During Phase 1, originally estimated to take about 10 years, a number of highly contaminated facilities will be removed. Phase 1 also includes characterization work and focused studies that will facilitate future decisionmaking for the remaining facilities or areas on the property. The original estimated cost for all of the Phase 1 work was approximately 1.2 billion dollars (FEIS, 2010).

DOE intends to complete any remaining WVDP decisionmaking with its Phase 2 decision (to be made within 10 years of the ROD) and expects to select either removal or in-place closure, or a combination of those two for the portions of the site for which it has decommissioning responsibility. The complete FEIS and the ROD can be viewed online at the DOE-WVDP website at www.wv.doe.gov.

To support the Phase 2 decision, DOE and NYSERDA are conducting scientific studies to facilitate interagency consensus on specific technical issues and to identify and reduce uncertainty in decommissioning decisions for the remaining facilities (See Phase 1 Studies). In February 2014, DOE and NYSERDA announced that a Supplemental EIS will be prepared to support the Phase 2 decision. Prior to preparation of the Supplemental EIS, a probabilistic performance assessment will be prepared to support the Phase 2 decision. In April 2015, DOE issued a final request for proposal for preparing the probabilistic performance assessment.
DOE/NYSERDA Consent Decree. DOE and NYSERDA reached an agreement on the cost sharing for cleanup of the WVDP and the WNYNSC by signing a Consent Decree on August 17, 2010 in the U.S. District Court, Western District of New York. While the Consent Decree defines the cost-sharing agreement, it does not affect in any way what the cleanup will be or the end state of the WVDP and the WNYNSC.

Facilities Disposition Contract. On June 30, 2011, DOE awarded the Phase 1 Decommissioning and Facility Disposition Contract to CH2M HILL • Babcock & Wilcox, West Valley, LLC (CHBWV), made up of CH2M HILL, Babcock & Wilcox Technical Services Group, Inc., and Environmental Chemical Corporation. In April 2015, CHBWV changed its name to CH2M HILL BWXT West Valley. The acronym CHBWV has not changed. CHBWV’s small business protégé is American Demolition and Nuclear Decommissioning, Inc. The term of the contract is approximately nine years. The scope of the contract is divided into four primary milestones. The following provides the contract status at the end of CY 2014 for each of these milestones:

Milestone 1 - Complete relocation of the canisters of vitrified HLW at the WVDP:

The 2014 milestone 1 activities included selection of a canister decontamination method, completion of construction of the HLW Cask Storage Pad, fabrication of eight additional Vertical Storage Casks, for a total of 16 casks, as well as eight overpacks.

These activities were followed by upgrades to the roads and to the Main Plant Process Building (MPPB) to facilitate relocating the casks to the HLW Cask Storage Pad; upgrades to the Equipment Decontamination Room and Load-in/Load-out Facility to support the weight of the casks capable of holding five HLW canisters; and procurement of specialized equipment for transport, loading, and remote welding of the cask lids. Relocation of the first cask containing five canisters of vitrified HLW is planned to occur in 2015.
Executive Summary

WVDP Annual Site Environmental Report - Calendar Year 2014

Milestone 4 - Completion of all work described in the Performance Work Statement including disposition of the Balance of Site Facilities:

During 2014, repairs to the Lake 1 spillway, and Lake 2 dam, and installation of a groundwater water supply system for the WVDP were completed under milestone 4. Conversion of the primary source of potable water from a surface water supply to a groundwater water supply system will allow for future closure and demolition of the site utility room attached to the MPPB.

Installation of Groundwater Supply Wells

Two structures were demolished in 2014, the Con-Ed building (a small structure which housed tank 8D-3 and tank 8D-4 instruments) and the T-FS-04 structure (the drum cell equipment shed).

Con-Ed Building Demolition

The CHBWV contract scope also includes continued safe operation of the site which involves:

- managing and maintaining site infrastructure;
- maintaining the lagoon system;
- conducting environmental monitoring and maintaining compliance with WVDP regulatory and permit requirements; and
- maintaining the Waste Tank Farm (WTF), the NRC licensed-disposal area (NDA), and the north plateau Permeable Treatment Wall (PTW).
Phase 1 Studies. In September 2011, DOE and NYSERDA jointly awarded the Phase 1 Studies contract to Enviro Compliance Solutions, Inc., an independent, agency-neutral contractor that is jointly funded by the agencies. This contract involves administration of all Phase 1 Study activities, including contracting with subject matter experts (SMEs), the independent scientific panel (ISP), and other contractors.

During 2014, the erosion working group of SMEs continued evaluating the issue of uncertainty in erosion predictions. They refined their recommendations on how to reduce uncertainties and prioritized recommended future erosion-related studies. The public was updated on the status of Phase 1 Studies during public meetings in February, May, and August 2014.

Environmental Characterization Services Contract. In December 2010, DOE awarded an environmental characterization services contract to implement the data collection activities described in the Characterization Sampling and Analysis Plan and the Final Status Survey Plan to support Phase 1 decommissioning activities at the WVDP. Environmental characterization activities performed in 2014 included collecting and analyzing soil samples for radiological parameters and performing radiological gamma walkover surveys within the footprints of some of the WVDP structures removed by CHBWV.

During 2014, DOE in cooperation with NYSERDA commissioned an aerial survey to measure radiation at the WNYNSC and a portion of Cattaraugus Creek from the boundary of the WNYNSC to Lake Erie. The survey is intended to serve as a new baseline for both on-site and off-site radiation levels and provide comprehensive updated information for Phase 2 decisionmaking. The aerial helicopter survey was conducted in September 2014.

Permeable Treatment Wall Performance. The full-scale PTW, installed in November 2010, has now been monitored for four years. Performance monitoring data collected to date continue to indicate:

- groundwater flow patterns in the PTW area are similar to those observed prior to PTW construction indicating that the PTW installation does not significantly alter groundwater flow conditions on the north plateau;
- groundwater treatment by ion exchange is occurring as evidenced by the fact that strontium-90 activity in groundwater inside the PTW is either not detected or substantially lower overall than strontium-90 activity levels upgradient of the PTW;
- geochemical differences observed in groundwater that has migrated into and through the zeolite also indicate that ion exchange (i.e., treatment) is occurring;
- strontium-90 activity in groundwater immediately downgradient of the PTW has decreased; and
- strontium-90 activity that had already migrated past the PTW prior to its installation is continuing to migrate downgradient. However, downgradient strontium-90 concentrations are expected to decrease over time as groundwater treated by the PTW flows towards these areas.

Based on the January 2014 and January 2015 annual sampling results, there are no strontium-90 concentrations greater than 1.0×10^{-5} µCi/mL ($10,000$ pico-Curies per liter [pCi/L]) downgradient of the PTW and no detected strontium-90 activities above 1.0×10^{-6} µCi/mL ($1,000$ pCi/L) in the downgradient eastern lobe of the strontium-90 plume.

These observations indicate the ongoing processes within the PTW continue to achieve the remedial action objectives of the PTW defined in the PTW Performance Monitoring Plan.

NRC-Licensed Disposal Area (NDA). Water level data indicate the cap and slurry wall installed in 2008 are causing the weathered Lavery till to become dry in some areas as designed. Reduced water volume extracted from the interceptor trench since the cap and slurry wall were installed also continues to indicate groundwater flow through the NDA is effectively being reduced.

Waste Tank Farm (WTF) Tank and Vault Drying System (T&VDS). With an ultimate goal of preventing the underground steel tanks from corroding under ambient tank and vault conditions, the WVDP installed a T&VDS in the WTF in 2010. The T&VDS was designed to reduce the liquid volumes in the tanks, thereby reducing the harmful effects of corrosion on the underground waste tanks situated within concrete vaults originally installed in the 1960s. The system has operated effectively since startup with only temporary shutdowns for minor repairs. The system has achieved the following results as of the end of 2014:

- maintained dry conditions in tanks 8D-1 and 8D-2;
• maintained liquid levels below level indicators in tanks 8D-1 and 8D-2 vaults and pans;
• maintained the liquid level in tank 8D-3 below the level indicator and reduced liquid levels in tank 8D-4;
• maintained the dry condition of the tank 8D-3/8D-4 vault; and
• continued to achieve lower relative humidity in the tanks and vaults reducing the corrosion rate.

System operations continue to be monitored to reduce air infiltration, and individual air flows are adjusted to maintain a target of <30% relative humidity in the tanks and vaults.

Safety Success. The radiological and hazardous work environment at the WVDP warrants strict adherence to safety procedures. As of December 31, 2014, CHBWV and its subcontractors worked approximately 1.2 million work hours without a lost-time work accident or illness, achieving one of the best safety records in the DOE complex.

Environmental Management System (EMS)

The WVDP EMS satisfies the requirements of DOE Order 436.1, “Departmental Sustainability,” and is a key part of the WVDP Integrated Safety Management System. In 2014, WVDP employees continued to demonstrate their commitment to an all-inclusive approach to safety, coordinating the EMS with other safety management and work planning processes through the integrated environmental, health, and safety management program. CHBWV received a certificate of registration for its EMS under International Organization for Standardization 14001:2004 on July 31, 2012.

Compliance. WVDP management continued to provide strong support for environmental compliance in 2014. Requirements and guidance from applicable state and federal statutes, executive orders, DOE orders, and standards are integrated into the Project’s compliance program.

• There were no New York State Pollutant Discharge Elimination System (SPDES) permit limit noncompliance events in CY 2014.
• In June 2014, the WVDP submitted a Mercury Minimization Program Report in accordance with the SPDES permit. The report identified actions implemented to reduce mercury discharges from WVDP wastewater. The WVDP continues to perform enhanced sampling to monitor mercury in its wastewater.
• Inspections by the Environmental Protection Agency, New York State Department of Environmental Conservation (NYSDEC) and the Cattaraugus County Health Department verified Project compliance with the applicable environmental and health regulations in 2014.
• WVDP waste management areas were inspected in March 2014 by NYSDEC to ensure compliance with the Resource Conservation and Recovery Act Interim Status Facility regulations. No findings were noted.
• Requirements of the Emergency Planning and Community Right-to-Know Act were met in 2014 by collecting information about hazardous materials used at the Project and making this information available to the appropriate emergency response organizations.
• No exceedances to the Environmental Protection Agency’s National Emission Standards for Hazardous Air Pollutants (NESHAP) dose standard occurred in 2014.

Environmental Monitoring – Performance Indicators. As part of the WVDP EMS, environmental monitoring continued on and near the site to detect and evaluate changes in the environment resulting from Project (or pre-Project) activities and to assess the effect of any such changes on the environment or human population. Within the environmental monitoring program, airborne and waterborne effluents were sampled and environmental surveillances of the site and nearby areas were conducted.

• Waterborne Radiological Releases

Waterborne radiological releases from the site were from two primary sources, lagoon 3 and a drainage channel on the WVDP’s north plateau that is contaminated with strontium-90 from pre-WVDP operations. During 2014, treated process water was released in four batches from lagoon 3, totaling approximately 5.8 million gallons (21.8 million L), and approximately 16.2 million gallons (61.1 million L) flowed from the site through the north plateau drainage channel.

There were no unplanned releases of waterborne radioactivity in 2014.
• Airborne Radiological Releases

In 2014, the WVDP maintained seven NESHAP permits for point source release of radiological airborne emissions. The primary controlled air emission point at the WVDP is the MPPB ventilation stack. The second full year of monitoring using the 16 new ambient air monitoring network stations was completed in CY 2014. WVDP requested and obtained approval from the Environmental Protection Agency for retrospective use of ambient air monitoring data to demonstrate compliance with airborne radiological release limits for 2014.

There were no unplanned radiological airborne releases at the WVDP during 2014.

• Estimated Dose

The ambient air monitoring data were used to estimate the dose from airborne releases for NESHAP compliance for the first time in 2014. The estimated dose to a “critical receptor” (formerly referred to as the Maximally Exposed Off-Site Individual) from airborne emissions at the WVDP in 2014 was <0.52 millirem (mrem) (0.0052 millisievert [mSv]) which is below the 10-mrem (0.1 mSv) limit established by EPA and mandated by DOE Order 458.1.

Estimated dose from waterborne sources in 2014 was about 0.027 mrem (0.00027 mSv), with 0.0090 mrem (0.000090 mSv) attributable to liquid effluent releases and 0.018 mrem (0.00018 mSv) attributable to the north plateau drainage.

Total estimated dose to the critical receptor from both airborne and waterborne sources in 2014 was <0.55 mrem (<0.0055 mSv), less than 0.55% of the annual 100-mrem DOE standard. In comparison, the average dose to a member of the public from natural background sources is 310 mrem per year.

• Dose to Biota

A dose to biota evaluation for CY 2014 once again concluded that aquatic and terrestrial biota populations (both plants and animals) were not exposed to doses in excess of the existing DOE dose standard for native aquatic animal organisms (1 rad/day) nor the recommended thresholds for terrestrial animals (0.1 rad/day) and plants (1 rad/day).

• Nonradiological Releases

Nonradiological releases from Project wastewater and storm water monitoring points were measured and documented under the site’s SPDES permit. As noted previously, there were no SPDES permit noncompliance events in 2014.

Quality Assurance (QA). In 2014, the QA program continued for activities supporting the environmental and groundwater monitoring programs at the WVDP. As part of this ongoing effort, on-site and subcontract laboratories that analyze WVDP environmental samples participated in independent radiological and nonradiological constituent performance evaluation studies. In these studies, environmental test samples with concentrations only known by the testing agency were analyzed by the laboratories. Of 318 performance evaluation analyses conducted for the WVDP, 98.4% were within acceptance limits.

Numerous inspections, audits, assessments, and surveillances of components of the environmental monitoring program were conducted in 2014. Although actions were recommended to improve the program, nothing was found that would compromise the quality of data in this report or the environmental monitoring program in general.

Conclusion

In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2014 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.
INTRODUCTION

Site Location

The West Valley Demonstration Project (WVDP or Project) is located in western New York State (NYS), about 30 miles (mi) (50 kilometers [km]) south of Buffalo, New York (Fig. INT-1). The WVDP facilities currently occupy a security-fenced area of about 152 acres (61 hectares [ha]) within the 3,338-acre (1,351 ha) Western New York Nuclear Service Center (WNYSNC or Center) located primarily in the town of Ashford in northern Cattaraugus County.

General Environmental Setting

Climate. Although extremes of 99°F (37°C) and -20°F (-29°C) have been recorded in western New York, the climate is moderate, with an average annual temperature of 47.7°F (8.7°C) (National Oceanic and Atmospheric Administration Climactic Data Center [Official Record] for 1895 to 2013, www.ncdc.noaa.gov/cag and www.weather.gov/buf/BUFRecords). Precipitation is markedly influenced by Lake Erie to the west and, to a lesser extent, by Lake Ontario to the north. Regional winds are generally from the west and south at about 9 miles per hour (4 meters/second).

Ecology. The WNYSNC lies within the northern deciduous forest biome, and the diversity of its vegetation is typical of the region. Equally divided between forest and open land, the site provides a habitat especially attractive to white-tailed deer and various indigenous and migratory birds, reptiles, and small mammals. No species on the federal endangered species list are known to reside on the WNYSNC.

Geology and Hydrology. The Project lies on NYS’s Allegheny Plateau at an average elevation of about 1,300 feet (ft) (400 meters [m]) above mean sea level. The underlying geology includes a sequence of glacial sediments above shale bedrock. The Project is drained by three small streams (Franks Creek, Quarry Creek, and Erdman Brook) and is divided by a stream valley (Erdman Brook) into two general areas: the north plateau and the south plateau.

Franks Creek, which receives drainage from Erdman Brook and Quarry Creek, flows into Buttermilk Creek, which enters Cattaraugus Creek and flows westward away from the WNYSNC. (See Figures A-1 and A-5.) Cattaraugus Creek ultimately drains into Lake Erie, to the northwest.

Relevant Demographics

Although several roads and a railway approach or pass through the WNYSNC, the public is prohibited from accessing the WNYSNC. A limited public deer hunting program managed by NYSERDA is conducted on a year-to-year basis in designated areas on the WNYSNC. No unescorted public access is allowed on the WVDP premises.

Land near the WNYSNC is used primarily for agriculture and arboriculture. Downgradient of the WNYSNC, Cattaraugus Creek is used locally for swimming, canoeing, and fishing. Although some water is taken from the creek to irrigate nearby golf course greens and tree farms, no public drinking water is drawn from the creek before it flows into Lake Erie. Water from Lake Erie is used as a public drinking water supply.

The communities of West Valley, Riceville, Ashford Hollow, and the village of Springville are located within approximately 5 mi (8 km) of the Project. Population around the site is sparse with the average population density of Cattaraugus County about 61 persons/mi² (24 persons/km²). No major industries are located within this area.

Historic Timeline of the WNYSNC and the WVDP

The following summary, presented in Table INT-1, depicts a historic timeline for the WNYSNC and the WVDP beginning with the establishment of the WNYSNC as a commercial nuclear fuel reprocessing facility, to the creation of the WVDP, to the current Project mission. The summary includes significant legal directives, major activities, and accomplishments.
FIGURE INT-1
Location of the Western New York Nuclear Service Center

[Map showing location of Western New York Nuclear Service Center and neighboring areas]

Ontario, Canada

Buffalo

Lake Erie

Canada

United States

NEW YORK

PENNSYLVANIA

Chautauqua County

Erie County

Wyoming County

Allegheny County

Cattaraugus County

Wyoming

Erie

Cattaraugus

Allegheny

Cattaraugus

Lake Erie

Ontario, Canada

SEE ENLARGED AREA BELOW
TABLE INT-1

Historic Timeline of the WNYNSC and the WVDP

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1954</td>
<td>The Federal Atomic Energy Act (AEA) promoted commercialization of reprocessing spent nuclear fuel.</td>
</tr>
<tr>
<td>1959</td>
<td>NYS established the Office of Atomic Development (OAD) to coordinate the atomic industry.</td>
</tr>
<tr>
<td>1961</td>
<td>The NYS OAD acquired 3,345 acres (1,354 ha) of land in Cattaraugus County, Town of Ashford (near West Valley), in western New York and established the WNYNSC.</td>
</tr>
<tr>
<td>1962</td>
<td>Davison Chemical Company established Nuclear Fuel Services, Inc. (NFS) as a nuclear fuel reprocessing company, and reached an agreement with NYS to lease the WNYNSC (also referred to as “the Center”).</td>
</tr>
<tr>
<td>1966</td>
<td>NFS constructed and operated the commercial nuclear fuel reprocessing facility at the WNYNSC from 1966 to 1972. NFS processed 640 metric tons (mt) of spent reactor fuel at the facility, generating 660,000 gallons (gal) (2.5 million liters [L]) of highly radioactive liquid waste. A 5-acre landfill, the U.S. Nuclear Regulatory Commission (NRC)-licensed disposal area (NDA) was operated for disposal of waste generated from the reprocessing operations from 1966 until 1986. Also, a 15-acre commercial disposal area, the SDA regulated by NYS agencies, under delegation of authority from the NRC, accepted low-level radioactive waste (LLW) from operations at the WNYNSC and from off-site facilities from 1963 until 1975.</td>
</tr>
<tr>
<td>1972</td>
<td>In 1972, while the plant was closed for modifications, more rigorous regulatory requirements were imposed upon fuel reprocessing facilities. NFS determined the costs to meet regulatory requirements of spent nuclear fuel reprocessing were not economically feasible. NFS then notified the NYSERDA, the successor to NYS OAD, in 1976 that they would discontinue reprocessing and would not renew the lease that would expire at the end of 1980.</td>
</tr>
<tr>
<td>1975</td>
<td>Water infiltrated into the SDA trenches and waste burial operations ceased. Between 1975 and 1981, NFS pumped, treated, and released liquids to the adjacent stream. Redesigning the covers reduced, but did not eliminate, water accumulation in the trenches.</td>
</tr>
<tr>
<td>1980</td>
<td>The U.S. Congress passed Public Law 96-368, the West Valley Demonstration Project Act (WVDP Act), requiring the DOE to be responsible for solidifying the liquid high-level radioactive waste (HLW) stored in underground tanks, disposing of the waste that would be generated by solidification, and decontaminating and decommissioning the facilities used during the process. Per the WVDP Act, the DOE entered into a Cooperative Agreement with NYSERDA that established the framework for cooperative implementation of the WVDP Act. Under the agreement, DOE has exclusive use and possession of a portion of the Center (i.e., WNYNSC) known as the Project Premises (approximately 167 acres at that time). A supplement to the Cooperative Agreement (1981 amendment) between the two agencies set forth special provisions for the preparation of a joint Environmental Impact Statement (EIS).</td>
</tr>
<tr>
<td>1981</td>
<td>DOE and NRC entered into a Memorandum of Understanding (MOU) that established specific agency responsibilities and arrangements for informal review and consultation by NRC. Because NYSERDA holds the license and title to the WNYNSC, NRC put the technical specifications of the license (CSF-1) in abeyance to allow DOE to carry out the responsibilities of the WVDP Act.</td>
</tr>
<tr>
<td>1982</td>
<td>West Valley Nuclear Services (WVNS), a Westinghouse subsidiary, was chosen by DOE to be the management and operating contractor. WVNS commenced operations at the WVDP on February 28, 1982.</td>
</tr>
<tr>
<td>1983</td>
<td>Before discontinuing fuel reprocessing operations, NFS had accepted 750 spent fuel assemblies which remained in storage in the on-site fuel receiving and storage (FRS) area. Between 1983 and 1986, 625 of those assemblies were returned to the utilities that owned them. In 1983, NYSERDA assumed management responsibility for the SDA and focused efforts on minimizing infiltration of water into the trenches. In the 1990s, installation of a geomembrane cover over the entire SDA and an underground barrier wall were successful in eliminating increases in trench water levels. The DOE selected the vitrification (VIT) process as the preferred method for solidifying the HLW into glass.</td>
</tr>
<tr>
<td>1984</td>
<td>Non-radioactive testing of a full-scale VIT system was conducted from 1984–1989. NFS entered into an agreement with DOE in which DOE assumed ownership of the remaining 125 fuel assemblies in the FRS pool and the responsibility for their removal.</td>
</tr>
</tbody>
</table>
A large volume of radioactive, non-HLW would result from WVDP activities. On-site disposal of most of this waste was evaluated in an Environmental Assessment (EA [DOE/EA-0295, April 1986]), and a finding of no significant impact was issued. The Coalition on West Valley Nuclear Waste (The Coalition) and the Radioactive Waste Campaign filed suit contending an EIS should have been prepared. The NYS Department of Environmental Conservation (NYSDEC) was authorized by the U.S. Environmental Protection Agency (EPA) to administer the Resource Conservation and Recovery Act (RCRA) hazardous waste program.

A decision to potentially dispose of LLW at the Project led to a legal disagreement between DOE, The Coalition, and the Radioactive Waste Campaign. The lawsuit was resolved by a Stipulation of Compromise which states that LLW disposal at the site and the potential effects of erosion at the site must be included in a comprehensive EIS.

In December 1988, the DOE and NYSERDA issued a Notice of Intent (NOI) in the Federal Register (FR) to prepare an EIS in accordance with Section 102(2)(C) of the National Environmental Policy Act (NEPA) and Section 8-0109 of the New York State Environmental Quality Review (SEQR) Act. To prepare for VIT, the integrated radiological waste treatment system was constructed to process liquid supernatant from the underground waste tanks by removing most of the radioactivity in the supernatant, concentrating the liquid, and blending it with cement. The HLW sludge layer was then washed to remove soluble salts. The water containing the salts was also stabilized into cement. About 20,000 drums of cement-stabilized LLW were stored in the aboveground drum cell. The process was completed in 1995.

Organic solvent was observed in a groundwater monitoring well immediately downgradient of the NDA in 1983. Following characterization of the area, an interceptor trench bordering the northeast and northwest boundaries of the NDA and a liquid pretreatment system (LPS) were built in 1990–1991. The trench was designed to collect liquid that might migrate from the NDA and the LPS was designed to recover free organic product (if present) from the recovered liquid. To date, no organic product has been detected in the interceptor trench water; therefore, the water has been pumped and treated through the LLW treatment system. In 1990, NYS was granted the authority to regulate the hazardous waste constituents of radioactive mixed waste. Subsequently, a Title 6 New York State Official Compilation of Codes, Rules, and Regulations (NYCRR) RCRA Part 373-3 (Part A) Permit Application for the WVDP was filed with NYSDEC for storage and treatment of hazardous and mixed wastes.

In 1992, DOE and NYSERDA entered into a RCRA §3008(h) Administrative Order on Consent (Consent Order) with NYSDEC and the EPA. The Consent Order pertained to management of hazardous waste and/or hazardous constituents from solid waste management units (SWMUs) at the WVDP. It also required DOE and NYSERDA to perform a RCRA Facility Investigation (RFI) at the WNYNSC to determine if there had been or if there was potential for a release of RCRA hazardous constituents. Final RFI reports were submitted in 1997, completing the Consent Order investigative activities.

In 1993, gross beta activity in excess of 1.0E-06 microcuries per milliliter (µCi/mL) (the DOE Derived Concentration Guide [DCG] for strontium-90, the applicable guidance at that time) was detected in surface water on the north plateau, in the vicinity of sampling location WNSWAMP. The gross beta radioactivity was determined to be strontium-90.

Extensive subsurface investigations delineated the extent of the strontium-90 plume and determined that the plume originated beneath the southwest corner of the main plant process building (MPPB) during NFS operations and migrated toward the northeast quadrant of the north plateau. A second lobe of contamination was attributed to the area of former lagoon 1, which was backfilled in 1984.

In 1995, a groundwater recovery system consisting of three wells was installed on the north plateau to extract and treat the strontium-90-contaminated groundwater. In 1999, a pilot-scale permeable treatment wall (PTW) was constructed to test this passive in-situ remediation technology. The VIT building shielding was installed in 1991, the slurry-fed ceramic melter was assembled in 1993, and the remaining major components were installed and tested by the end of 1994. In 1995, the VIT facility was completed, fully tested, and "cold operations" began.
TABLE INT-1 (continued)

Historic Timeline of the WNYSNC and the WVDP

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>The DOE and NYSERDA issued a draft EIS (DEIS) for completion of the WVDP and closure or long-term management of the WNYSNC. Following evaluation of the public comments on the DEIS, the Citizen Task Force was convened to enhance stakeholder understanding and input regarding the WVDP/WNYSNC closure process. VIT operations began in 1996 and continued into 2002, producing 275 ten-foot-tall stainless-steel canisters of hardened radioactive glass containing 16.1 million curies of radioactive material, primarily cesium and strontium, with the radioactivity from daughter products included (decay corrected to 1/1/2014, WVNS-CAL-396). The VIT melter was shut down in September 2002. NYSDEC and DOE entered into an Order on Consent negotiated under the Federal Facilities Compliance Act (FFCA) for handling, storage, and treatment of mixed wastes at the WVDP. The Seneca Nation of Indians Cooperative Agreement was signed in 1996 to foster government-to-government relationships between the Seneca Nation and the U.S. government, as represented by DOE.</td>
</tr>
<tr>
<td>1999</td>
<td>VIT expended materials processing was initiated to begin processing unserviceable equipment from the VIT facility. This success helped in developing a remote-handled waste facility (RHWF) to process large-scale, highly contaminated equipment excessed during decontamination and decommissioning (D&D) activities.</td>
</tr>
<tr>
<td>2000</td>
<td>Restructuring of the work force and construction of the RHWF began.</td>
</tr>
<tr>
<td>2001</td>
<td>The 125 spent fuel assemblies that remained in storage at the WVDP since 1975 were prepared for transport to the Idaho National Engineering and Environmental Laboratory (INEEL). Initial decontamination efforts began in two significantly contaminated areas in the MPPB, the process mechanical cell and the general purpose cell, to place the cells in a safer configuration for future facility decommissioning. DOE published formal notice in 66 FR 16447 to split the EIS process into (1) the WVDP Waste Management EIS, and (2) the Decommissioning and/or Long-Term Stewardship EIS at the WVDP and the WNYSNC.</td>
</tr>
<tr>
<td>2002</td>
<td>NRC issued "Decommissioning Criteria for the West Valley Demonstration Project (M-32) at the West Valley Site; Final Policy Statement" (67 FR 5003).</td>
</tr>
<tr>
<td>2003</td>
<td>The remaining 125 spent fuel assemblies were shipped to INEEL, allowing for decontamination of the FRS to begin.</td>
</tr>
<tr>
<td>2004</td>
<td>The RHWF became operational. Major decontamination efforts continued and site footprint reduction began as 20 office trailers were removed. In December, the 6 NYCRR Part 373-2 Permit Application (i.e., Part B) was submitted to NYSDEC.</td>
</tr>
<tr>
<td>2005</td>
<td>In June, the DOE published its final decision on the "WVDP Waste Management Environmental Impact Statement (68 FR 26587)." The DOE implemented the preferred alternative for the management of LLW and mixed LLW. The decision on transuranic (TRU) waste was deferred, and the canisters of vitrified HLW will remain in on-site storage until they can be shipped to a repository. In November, the WVDP was downgraded to a Category 3 nuclear facility, marking the first time in the site’s history that it has been designated the least of the three DOE nuclear facility designations. The categorization is based on amounts, types, and configuration of the nuclear materials stored and their potential risks.</td>
</tr>
<tr>
<td>2006</td>
<td>An EA (DOE/EA-1552) evaluating the proposed decontamination, demolition, and removal of 36 facilities was issued. By the end of 2006, 11 of the 36 structures were removed. The DOE-WVDP office initiated a collaborative, consensus-based team process, referred to as the "Core Team," that involved DOE, NYSERDA, EPA, the New York State Department of Health (NYSDOH), NRC, NYSDEC, and later West Valley Environmental Services, LLC (WVES). This team brought individuals with decisionmaking authority together to resolve challenging issues surrounding the WVDP EIS process and to make recommendations to move the Project toward an "Interim End-State" prior to issuance of the "Final EIS for the Decommissioning and/or Long-Term Stewardship at the WVDP and the WNYSNC." Shipment of the cement-filled LLW drums was initiated.</td>
</tr>
<tr>
<td>2007</td>
<td>Demolition and removal of four more structures identified under DOE/EA-1552 was completed. On June 29, 2007, DOE awarded WVES a four-year contract (Contract DE-AC30-07CC30000) to conduct the next phase of cleanup operations at the WVDP. The remaining drums of cemented LLW in the drum cell were packaged and shipped to the Nevada Test Site for disposal. In the fall of 2007, an Interim Measure (IM) to minimize water infiltration into the NDA was initiated with site surveys and soil borings.</td>
</tr>
</tbody>
</table>
Introduction

TABLE INT-1 (continued)

Historic Timeline of the WNYNSC and the WVDP

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>During 2008, a trench was excavated along two sides of the NDA, on the south plateau. The trench was backfilled with bentonite and soil to form a slurry wall, a low-permeability subsurface barrier to infiltration. A geomembrane cover was placed over the entire landfill. On the north plateau, additional subsurface soil and groundwater samples were collected in the summer and fall of 2008 to further characterize chemical and radiological constituents within the contaminated groundwater plume beneath and downgradient of the MPPB. The revised DEIS for Decommissioning and/or Long-Term Stewardship at the WVDP and WNYNSC was issued in December for public review, which continued through September 8, 2009. Concurrently, the Proposed Phase 1 Decommissioning Plan (DP) for the WVDP was prepared and submitted to NRC.</td>
</tr>
<tr>
<td>2009</td>
<td>Extensive characterization was completed on the north plateau in 2009 to delineate the leading edge of the subsurface strontium-90 groundwater plume and to find a suitable material to capture and retain the contamination.</td>
</tr>
<tr>
<td>2010</td>
<td>In January, DOE and NYSERDA issued the final EIS (FEIS) for the WVDP and the WNYNSC (DOE/EIS-0226). The phased decisionmaking alternative was selected as the preferred alternative. The phase 2 decision was deferred for no more than 10 years. In February, NRC issued a Technical Evaluation Report (TER) for the DP, concluding that the DP was consistent with the preferred alternative in the EIS. A SEQR notice of completion for the EIS and its acceptance by NYSERDA was issued on January 27, 2010. On April 14, 2010, DOE issued the Record of Decision (ROD) for the EIS, and on May 12, NYSERDA issued a SEQR Findings Statement, selecting the phased decisionmaking alternative. On August 17, 2010, DOE and NYSERDA reached an agreement and signed a Consent Decree that formally defined the cost sharing for cleanup of the WVDP and the WNYNSC. In September 2010, a revised RCRA Part 373-2 Permit Application was submitted to NYSDEC. An 860-foot-long full-scale PTW near the leading edge of the strontium-90 plume was installed and completed. The Tank and Vault Drying System (T&VDS) was installed to reduce the harmful effects of corrosion on the underground waste tanks. MPPB cell decontamination and deactivation activities continued.</td>
</tr>
<tr>
<td>2011</td>
<td>DOE awarded the Phase 1 Decommissioning and Facility Disposition contract to CH2M HILL • B&W West Valley, LLC (CHBWV) on June 29, 2011. The "continuity of contract" period extended to August 29, 2011 during which time work activities were transitioned, environmental monitoring continued, and licenses and permits were transferred to CHBWV. A separate contract was awarded to Safety and Ecology Corporation to implement work associated with the Phase 1 characterization support services, which are requirements of the Phase 1 DP. In September 2011, DOE and NYSERDA jointly awarded a Phase 1 Studies contract to Enviro Compliance Solutions to identify and implement the Phase 1 Studies. The objective of the studies is to use technical experts to conduct scientific studies that will facilitate interagency consensus for decisionmaking in the Phase 2 decommissioning process.</td>
</tr>
<tr>
<td>2012</td>
<td>CHBWV continued work on the Phase 1 Decommissioning Facilities Disposition Contract, including design of the HLW Canister Interim Storage System, continued legacy waste shipment, preparation for demolition of the MPPB and VIT facility, and demolition of nonradiological Balance of Site Facilities (BOSF). Demolition of the nonradiologically contaminated portions of the 01-14 building began in 2012. DOE issued a final Waste Incidental to Reprocessing (WIR) evaluation for the VIT melter in February 2012, determining that this vessel is LLW incidental to reprocessing and therefore may be managed under DOE's authority in accordance with the requirements of LLW. Phase 1 Studies teams of Subject Matter Experts (SMEs) continued development of recommendations for the identified areas of study. Environmental characterization of surface soils and soil excavations performed in 2012 included characterization of two reference areas, the HLW Canister Interim Storage System area, and two building footprints following demolition.</td>
</tr>
</tbody>
</table>
TABLE INT-1 (concluded)
Historic Timeline of the WNYNSC and the WVDP

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>CHB WV completed demolition of seven buildings in 2013, including demolition of the radiologically contaminated portions of the 01-14 building. The HLW Cask Storage Pad was constructed and eight Vertical Storage Casks (VSCs) were fabricated. The site’s existing inventory of legacy LLW and mixed low-level waste (MLLW) was reduced by 50% from the start of the CHB WV contract as a result of off-site shipments. Preparations continued for canister relocation and demolition of the MPPB and VIT facility. A request for EPA approval was prepared for a new MPPB ventilation system. The off-site ambient air monitoring network was in service for a full year in 2013. DOE issued a WIR for the Concentrator Feed Makeup Tank (CFMT) and Melter Feed Hold Tank (MFHT) in February 2013 and began planning for off-site shipment of these vessels and the VIT melter. Phase 1 Studies to support the Phase 2 decision continued in 2013. Environmental characterization activities continued in 2013 and included collection of soil samples and radiological ground surface surveys.</td>
</tr>
<tr>
<td>2014</td>
<td>The WVDP was identified as one of DOE’s safest sites in 2014 and CHB WV earned the DOE-VPP STAR of Excellence for safe work practices. CHB WV continued preparation for HLW canister relocation, with fabrication of eight additional VSCs, development of a canister decontamination process, procurement of custom designed heavy equipment to move the canister-loaded casks from the MPPB to the HLW Cask Storage Pad, and modifications to the rooms in the MPPB that will be used during the transfer. The Con-Ed and T-FS-04 buildings were demolished. Deactivation and hazard reduction continued inside the MPPB. Debris removal and gross decontamination of the VIT facility was completed in preparation for demolition. The potable water supply system was changed over from a surface water source to a groundwater source. EPA conditionally approved construction of a new MPPB ventilation system in April 2014 (with final approval in March 2015). EPA approved use of the ambient air data to demonstrate compliance with air emissions standards for 2014. A transportation safety analysis report for off-site shipment of the VIT melter was submitted to NRC. Extensive repairs to the lakes and dams were made followed by site restoration.</td>
</tr>
</tbody>
</table>
Compliance Program

Activities at the WVDP are regulated by various federal and state, public, worker, and environmental protection laws. These laws are administered primarily by the EPA, DOE, the U.S. Fish and Wildlife Service, the U.S. Army Corps of Engineers (USACE), NYSDEC, and NYSDOH through programs and regulatory requirements for permitting, reporting, inspecting, self-monitoring, and auditing.

Table ECS-1 describes the WVDP’s compliance status with applicable environmental statutes, DOE directives, executive orders (EOs), and state laws and regulations applicable to the Project activities.

Table ECS-2 presents a summary of the significant NEPA document history. An update of NEPA activities is provided later in this chapter.

EPA, NYSDEC, and DOE have established standards for effluents that are intended to protect human health, safety, and the environment. DOE applies to EPA for permits to release limited amounts of radiological constituents to the air and applies to NYSDEC for permits to release limited amounts of nonradiological constituents to the air and water, in concentrations determined to be safe for humans and the environment. In general, the permits describe release points, specify management and reporting requirements, list discharge limits on those pollutants likely to be present, and define the sampling and analysis regimen. Releases of radiological constituents in water are subject to the requirements in DOE Orders 458.1 (Radiation Protection of the Public and the Environment, Change 3) and DOE-STD-1196-2011 (Derived Concentration Standards [DCSs]). A summary of the WVDP environmental permits is found in Table ECS-3. (See the compliance tables at the end of this chapter.)

2014 Accomplishments and Highlights at the WVDP

CHBWV began performing the Phase 1 Decommissioning and Facility Disposition activities for DOE in August 2011. The term of the Phase 1 Decommissioning and Facility Disposition contract is from August 2011 to March 2020 and includes the following scope:

- packaging and relocating canisters of vitrified HLW from the MPPB to a new interim dry storage area;
- processing and shipping legacy waste;
- dismantling and removing the VIT facility and the MPPB;
- removing ancillary facilities; and
- continuing safe operations of the site, including:
 - managing and maintaining site infrastructure;
 - conducting environmental monitoring;
 - maintaining the waste tank farm (WTF), the NDA, and the north plateau PTW; and
 - maintaining the lagoon system.

2014 Major Accomplishments. Major accomplishments towards achieving Phase 1 Decommissioning and Facility Disposition included the following:

- completed installation of the concrete storage pad and approach apron where the canisters of vitrified HLW will be stored and fabricated eight additional 67 ton steel and concrete Vertical Storage Casks (VSCs) and eight steel overpack containers which are loaded inside the VSCs;
- removed 80 TRU waste containers from the MPPB former Chemical Process Cell;
- shipped existing waste inventory off site for disposal, achieving a 56% reduction in the site legacy LLW and a 79% reduction in legacy MLLW inventory in existence at the beginning of the CHBWV contract;
Environmental Compliance Summary

- submitted the VIT melter transportation safety analysis to the NRC for review;

- performed hazard reduction activities to prepare the MPPB and VIT facility for demolition including:
 - piping, miscellaneous equipment, and debris removal;
 - size reduction and preparation of remaining vessels for removal, and
 - asbestos abatement;

- completed demolition of the Con-Ed and T-FS-04 buildings (two small ancillary structures);

- operated the off-site ambient air monitoring network for a second full year, and used this data to estimate potential dose to the public from the airborne pathway;

- received conditional EPA approval for a new ventilation system for the MPPB (final approval received in March 2015) and constructed a building to house the new system; and

- completed repairs of erosion damage to the Lake 1 spillway and Lake 2 dam.

State Pollutant Discharge Elimination System (SPDES) Permit Noncompliance Events. During calendar year (CY) 2014, there were no SPDES permit noncompliance events associated with exceeding discharge limits in the SPDES permit.

Mercury Minimization Program. In June 2014, the WVDP submitted a Mercury Minimization Program Report to NYSDEC per the SPDES permit. The report identified actions that have significantly reduced mercury discharges at effluent discharge points, and stated that the WVDP continues to perform enhanced sampling to monitor mercury concentrations in its wastewaters. The report concluded that the WVDP continued to meet the goal of achieving and maintaining effluent water quality discharges below the required level and diligence to minimize mercury at the source will also continue.

Permeable Treatment Wall (PTW) Performance. The full-scale PTW, installed in November 2010, has now been monitored for four years. Performance monitoring data to date continue to indicate:

- groundwater flow patterns in the PTW area are similar to those observed prior to PTW construction, indicating that the PTW installation does not significantly alter general groundwater flow conditions on the north plateau;

- groundwater treatment by ion exchange is occurring as evidenced by the fact that strontium-90 activity in groundwater inside the PTW is either not detected or substantially lower overall than strontium-90 activity levels upgradient of the PTW;

- geochemical differences observed in groundwater that has migrated into and through the PTW zeolite also indicate that ion exchange (i.e., treatment) is occurring;
• strontium-90 activity in groundwater immediately downgradient of the PTW has decreased; and

• strontium-90 activity that had already migrated past the PTW prior to its installation is continuing to migrate downgradient. However, downgradient strontium-90 concentrations are expected to decrease over time as groundwater treated by the PTW flows towards these areas.

Based on the January 2014 and January 2015 annual sampling results, there are no strontium-90 concentrations greater than 1.0E-5 µCi/mL (10,000 picoCuries per liter [pCi/L]) downgradient of the PTW and no detected strontium-90 activities above 1.0E-6 µCi/mL (1,000 pCi/L) in the downgradient eastern lobe of the strontium-90 plume.

These observations indicate the ongoing processes within the PTW continue to achieve the remedial action objectives and the functional requirements of the PTW defined in the PTW Performance Monitoring Plan.

Waste Tank Farm (WTF) and the Tank and Vault Drying System (T&VDS). With an ultimate goal of preventing the underground steel tanks from corroding under ambient tank and vault conditions, the WVDP installed a T&VDS in the WTF in 2010. The T&VDS was designed to reduce the liquid volumes in the tanks, and thereby the harmful effects of corrosion on the underground waste tanks situated within concrete vaults originally installed in the 1960s. The system has operated effectively since startup, with only temporary shutdowns for minor repairs. The system has achieved the following results as of the end of 2014:

• maintained dry conditions in tanks 8D-1 and 8D-2;

• maintained liquid levels below level indicators in tanks 8D-1 and 8D-2 vaults and pans;

• maintained the liquid level in tank 8D-3 below the level indicator and reduced the liquid level in tank 8D-4 by 120 gal (454 L) during 2014 resulting in a residual 4,680 gal (17,715 L) in tank 8D-4;

• maintained the dry condition of the 8D-3/8D-4 vault; and

• continued to achieve lower relative humidity in the tanks and vaults, reducing the corrosion rate.

System operations continue to be monitored to reduce air infiltration, and individual air flows are adjusted to maintain a target relative humidity of <30% in the tanks and vaults.

Packaging and Transportation of Radioactive Material. Preparations for LLW disposal continued for the VIT melter, CFMT, and MFHT. Special authorization by the NRC is necessary prior to shipping the melter waste package. In 2014, DOE-WVDP submitted a transportation safety analysis report for the melter to demonstrate compliance with NRC transportation requirements in 10 CFR Part 71.

National Environmental Policy Act (NEPA)

NEPA requires DOE to consider the overall environmental effects of its proposed actions. Draft documents are prepared that describe potential environmental effects associated with proposed Project activities. The level of evaluation and documentation depends upon whether the action constitutes a major federal action significantly affecting the quality of the human environment within the meaning of NEPA. The categories of documentation include categorical exclusion (CX), EA, and EIS. Categorical Exclusions (CXs) describe actions that will not have a significant effect on the environment. EAs are used to evaluate the extent to which a proposed action, not categorically excluded, will affect the environment. Based on the analyses presented in an EA and considering regulatory agency, stakeholder, and public comments, DOE may determine that a proposed action is not a major federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, DOE may issue a notice indicating the finding of no significant impact (FONSI) and therefore would not be required to prepare an EIS.

If a proposed action has potential for significant environmental effects, an EIS would be prepared that describes proposed alternatives to an action and explains the effects of each. Based on the analyses presented, and considering regulatory agency and public input, DOE will determine the preferred alternative and issue a ROD regarding the action.

Since the Project began, a number of proposed site activities have warranted environmental impact evaluations. A summary of the significant NEPA document history is presented in Table ECS-2. WVDP CXs (most recent 5 years), EAs, and EISs can be found on the DOE-WVDP website under the documents index (www.wv.doe.gov/index.html).
Environmental Impact Statement (EIS) Issued. On April 14, 2010, DOE issued the ROD for the EIS, “Decommissioning and/or Long-Term Stewardship at the WVDP and the WNYNSC” (DOE/EIS-0226), selecting the phased decisionmaking alternative. In Phase 1, DOE will decommission the MPPB, the VIT facility, RHWF, the wastewater treatment lagoons, and a number of other facilities (see Figure ECS-1). No decommissioning actions will be taken on the WTF or the NDA, and the canisters of vitrified HLW will be safely stored on site. NYSERDA will manage the SDA. Phase 1 was originally estimated to take up to 10 years, during which time DOE will manage the site's remaining facilities in a safe manner.

The Phase 2 decision, which involves determining the decommissioning approach for the remaining facilities (e.g., the two inactive radioactive waste disposal facilities on the south plateau and the underground waste storage tanks), will be made within 10 years of the EIS ROD. DOE and NYSERDA are currently conducting additional scientific studies (i.e., Phase 1 Studies) to facilitate interagency consensus on decommissioning decisions for the remaining facilities.

In February 2014, DOE and NYSERDA announced that a Supplemental EIS will be prepared to support the Phase 2 decision. Prior to preparation of the Supplemental EIS, a probabilistic performance assessment will be prepared to support the Phase 2 decision. In April 2015, DOE issued a final request for proposal for preparing the probabilistic performance assessment.

Phase 1 Studies. In September 2011, DOE and NYSERDA jointly awarded the Phase 1 Studies contract to Enviro Compliance Solutions, Inc., an independent, agency-neutral contractor that is jointly funded by the agencies to administer contracts for all Phase 1 Study activities, including contracting with the facilitator, subject matter experts (SMEs), the Independent Scientific Panel (ISP), and contractors performing the study activities. During 2014, the erosion working group of SMEs continued evaluating the issue of uncertainty in erosion predictions and refined recommendations on how to reduce uncertainties and to prioritize recommended studies.

In June 2014, the ISP completed review of the recommendations developed by the exhumation working group of SMEs for Phase 1 exhumation studies covering
waste inventory analysis, methods to reduce uncertainty, and review of precedent projects. The ISP provided general comments on the recommendations and specific comments on the proposed studies. The public was updated on the status of Phase 1 Studies during public meetings in February, May, and August 2014.

Phase 1 Decommissioning Plan (DP) for the WVDP.

On December 5, 2008, the DOE issued the “Phase 1 Decommissioning Plan for the West Valley Demonstration Project, West Valley, NY” (73 Federal Register 74162) and transmitted it for NRC review. The DP addressed Phase 1 of the proposed two-phased approach for WVDP decommissioning, consistent with the preferred alternative selected in the ROD and the Findings Statement for the WVDP and the WNYNSC. On December 18, 2009, DOE submitted revision 2 of the Phase 1 DP after incorporating responses to NRC’s comments.

On February 25, 2010, NRC transmitted to DOE-WVDP the Technical Evaluation Report for the Phase 1 DP, concluding that the Phase 1 DP was consistent with the preferred alternative in the EIS. NRC also determined that there is reasonable assurance that the proposed Phase 1 actions will meet the decommissioning criteria.

Phase 1 Characterization Sampling and Analysis Plan (CSAP) and the Phase 1 Final Status Survey Plan (FSSP) for the WVDP. The Phase 1 DP required the preparation of two supplemental documents, the CSAP and the FSSP. These two documents provide the specific details of sampling activities to support Phase 1 decommissioning of the WVDP. The CSAP describes the radiological environmental data collection activities (surface and subsurface soils, sediments, and groundwater) that will specifically support the implementation of the Phase 1 decommissioning actions within the WVDP premises as described in the Phase 1 DP.

The FSSP provides the technical basis and sampling protocols to demonstrate that specific portions of the WVDP premises meet the Phase 1 radiological cleanup goals for surface and subsurface soils identified in the Phase 1 DP. The FSSP is consistent with the Multi-Agency Radiation Survey and Site Investigation Manual.

Environmental Characterization Services Contract.

In December 2010, DOE awarded an environmental characterization services contract to implement the data collection activities described in the CSAP and the FSSP to support Phase 1 decommissioning activities at the WVDP. Environmental characterization activities performed in 2014 included collecting and analyzing soil samples for radiological parameters and performing radiological gamma walkover surveys within the footprints of some of the WVDP structures removed by CHBWV.

Resource Conservation and Recovery Act (RCRA)

RCRA and its implementing regulations govern the life cycle of hazardous waste from “cradle-to-grave” and mandate that generators take responsibility for ensuring the proper treatment, storage, and ultimate disposal of their wastes. A hazardous waste permit is required for facilities that store large quantities of hazardous waste for more than 90 days or treat or dispose of hazardous waste at the facility.

EPA is responsible for issuing guidelines and regulations for the proper management of solid and hazardous waste (including mixed [radioactive and hazardous] waste). In New York, EPA has delegated the authority to issue permits and enforce these regulations to NYSDEC. In addition, the U.S. Department of Transportation is responsible for issuing guidelines and regulations for labeling, packaging, and spill reporting for hazardous and mixed wastes while in transit.

Hazardous Waste Permitting - RCRA Interim Status Permit Application. In 1984, DOE notified EPA of hazardous waste activities at the WVDP and identified DOE as a hazardous waste generator. In 1990, to comply with 6 NYCRR Part 373-3, a RCRA Part A (i.e., Interim Status or Part A) Permit Application for the WVDP was filed with NYSDEC for storage and treatment of hazardous waste. The WVDP has operated under interim status ever since. RCRA facility operations are limited to those described in the RCRA Part A Permit Application and must comply with the interim status regulations; therefore, the RCRA Part A Permit Application must be revised prior to changes to the Project’s RCRA waste management operations. The latest revisions to the RCRA Part A Permit Application were submitted to NYSDEC on April 27, 2011 and were conditionally approved by NYSDEC on June 9, 2011.

In accordance with the Part A requirements, DOE prepared closure plans for the hazardous waste management units at the WVDP. The closure plans were transmitted to NYSDEC in anticipation of closure activities, and are revised as appropriate to address NYSDEC comments or changes in activities. To complete closure of a RCRA unit, waste is removed, and impacted areas and facilities are decontaminated and/or removed. When specified
in the closure plan, confirmatory sampling and analysis are performed, and data are evaluated and presented to NYSDEC in a closure certification report to document completion of closure activities.

The 01-14 building, which contained the Cement Solidification System (CSS) was demolished in 2013. Piping and vessels associated with the CSS were removed during demolition. Building demolition did not include removal of the concrete floor which will be performed during Phase 1 soil remediation decommissioning along with the below grade portions of the MPPB and VIT. A proposed path forward for RCRA closure of the CSS was submitted to NYSDEC on February 6, 2014. The proposed path forward would provide for completion of closure of the CSS unit after the concrete floor is removed during Phase 1 soil remediation. In the interim, the concrete floor is maintained in an environmentally safe and stable condition.

RCRA closure plans for the VIT Facility and the Analytical and Process Chemistry (A&PC) Hot Cells were revised consistent with current demolition planning and were submitted to NYSDEC in 2014.

RCRA Final Status Permit Application. In 2003, NYSDEC officially requested the submittal of a 6 NYCRR Part 373-2 Permit Application (i.e., Part B) for the WVDP. The completed permit application was transmitted to NYSDEC in December 2004.

On April 16, 2009, NYSDEC officially requested the submittal of a revised Part B Permit Application for the WVDP. The revised permit application was submitted to NYSDEC on September 30, 2010. Due to the scope and breadth of the permit application, DOE and NYSERDA agreed to NYSDEC’s request for an indefinite suspension of NYSDEC’s completeness review in January 2011.

On March 22, 2012, NYSDEC notified NYSERDA and DOE that they would suspend further action relative to a Part B Permit. The site will continue to operate according to the 6 NYCRR Part 373-3, Part A (Interim Status) Permit Application. As part of this approach, processing of the September 2010 Part B Permit Application, including revisions, will be deferred to authority provided by the RCRA §3008(h) Administrative Order on Consent (or Consent Order) for corrective actions or operation under existing (Part A) Interim Status.

RCRA §3008(h) Administrative Order on Consent.
Section §3008(h) of RCRA authorizes EPA to issue an order requiring corrective action to protect human health and the environment if there has been or there is potential for a release of hazardous waste or hazardous constituents to the environment from a Solid Waste Management Unit (SWMU). DOE and NYSERDA entered into the Consent Order with NYSDEC and EPA in March 1992. Consent Order activities performed to date are summarized below.

- **RCRA Facility Investigation (RFI)**

 The Consent Order required NYSERDA and DOE’s WVDP office to conduct RFIs (unit-specific environmental investigations) at SWMUs to determine if a release occurred or if there was a potential for release of RCRA-regulated hazardous constituents from a SWMU. As many SWMUs are contiguous or close together, most were grouped into larger units, called super SWMUs (SSWMUs), terminology unique to the WVDP. SSWMU descriptions and the individual constituent SWMUs are presented in Table ECS-4. Figures A-9 and A-10 in Appendix A show the WVDP SSWMU locations. Final RFI reports were submitted in 1997, completing the Consent Order investigative activities. No corrective actions were required at that time.

 Groundwater monitoring, as recommended in the RFI reports and approved by EPA and NYSDEC, continued during 2014 per the Consent Order requirements. The groundwater program and monitoring results at the WVDP are discussed in Chapter 4, “Groundwater Protection Program.”

- **Current Conditions Report**

 Per a NYSDEC request, a report entitled “WVDP Solid Waste Management Unit Assessment and Current Conditions Report” was submitted in November 2004, which summarized the historic activities at each SWMU through the RFI activities and provided environmental monitoring data and information on SWMU activities performed since the RFI reports were submitted.

 This document was revised and submitted to NYSDEC and EPA on September 29, 2010, incorporating operational status changes of each SWMU and providing updated environmental monitoring data.

- **Corrective Measures Study (CMS)**

 In 2004, NYSDEC requested CMSs to be performed on six specific SWMUs at the WVDP. The six SWMUs were:
- NDA Burial Area (SWMU #2);
- NDA Interceptor Trench (SWMU #23);
- Demineralizer Sludge Ponds (SWMU #5);
- Lagoon 1 (SWMU #3);
- Construction Demolition and Debris Landfill (CDDL) (SWMU #1); and
- The Low-Level Waste Treatment Facility (LLWTF) (SWMUs #17, #17a, and #17b).

The CMS Work Plan was conditionally approved by NYSDEC in October 2006. Draft CMS reports were revised in 2010 to be consistent with the EIS and ROD and provide corrective measures evaluations. The revised documents were submitted to NYSDEC and EPA on September 29, 2010.

• Interim Measures (IM)

The NDA (SSWMU #9) is regulated under the Consent Order. In 1990, an IM was implemented that involved construction of a trench system through the weathered Lavery till along the northeast and northwest sides of the NDA to intercept and collect groundwater potentially contaminated with a mixture of n-dodecane and tributyl phosphate (TBP). Monitoring results in 2014 detected no TBP or organic constituents in groundwater from the NDA interceptor trench.

In 2008 DOE implemented a second IM for the NDA designed to minimize the potential release of impacted groundwater from the NDA, and minimize water infiltration into the NDA until the final disposition of the NDA is determined and can be implemented. An approximately 850-ft-long low permeability slurry wall was constructed along the south and western sides of the NDA to limit lateral groundwater migration. In order to meet the IM requirements to ensure a minimum 4 ft thick earthen cap, the project also involved resurfacing the entire five-acre (2 ha) landfill with additional soils, and re-grading, compacting, and applying an impermeable geomembrane cover. As a result of this IM, the volume of water pumped from the NDA interceptor trench has decreased significantly, to 74,494 gal (281,990 L) in CY 2014, compared with pre-IM volumes of several hundred thousand gallons. Refer to Chapter 4, “Groundwater Protection Program.”

In August 2014, the entire NDA cap was inspected, including storm water basins, walkways, ballast tubes, field seams, pipe penetrations, and the anchor trench. The need for several minor repairs, such as sealing minor holes, was observed; however, the overall cap condition was good, with no general deterioration of the geomembrane noted. The minor repairs identified have been performed.

• Quarterly Reporting to EPA and NYSDEC

Per the Consent Order, DOE transmits a quarterly progress report to EPA and NYSDEC, summarizing all Consent Order activities at the WVDP for the previous quarter. The report includes progress and accomplishments, contacts with local community interest groups and regulatory agencies pertaining to Consent Order activities at the WVDP, changes to personnel, projected future work activities, and an inventory of mixed waste generated from decontamination activities during the reporting period. The other report submitted quarterly to EPA and NYSDEC under the Consent Order is the groundwater exception report. This report includes NDA water level data that demonstrate the performance of the interceptor trench, cap, and slurry wall.

Hazardous Waste Management. Under RCRA, hazardous wastes at the WVDP are managed in accordance with 6 NYCRR Parts 370–374 and 376. Hazardous and mixed waste activities are reported to NYSDEC in the WVDP’s Annual Hazardous Waste Report, which specifies the quantities of waste generated, treated, and/or disposed of, and identifies the treatment, storage, and disposal facilities used. The Annual Hazardous Waste Report for 2014 was submitted to NYSDEC in February 2015.

Additional reports are submitted each year to document hazardous waste reduction efforts. Pursuant to Article 27, Section 0908 of New York State Environmental Conservation Law, an update of the WVDP’s Hazardous Waste Reduction Plan must be submitted to NYSDEC biennially. An annual status report (an abbreviated version of the biennial update) must be submitted in the interim years. The plan is updated to reflect changes in the types and amounts of hazardous wastes generated at the WVDP. The annual status report for the Hazardous Waste Reduction Plan for CY 2013 was submitted to NYSDEC on June 10, 2014.

Mixed Waste Management. Mixed wastes that cannot be treated or disposed of within one year are managed according to the “Site Treatment Plan (STP),” prepared by the DOE under requirements of the Federal Facilities Compliance Act (FFCA) (an amendment to RCRA), in accordance with a Consent Order agreement. The annually updated plan describes the development of
treatment capabilities and technologies for treating mixed waste and updates the mixed waste inventory. The fiscal year (FY) 2014 plan identified five proposed milestones for waste streams managed under the WVDP STP, all with completion dates in FY 2014. During 2014, 3,642 pounds (1.82 tons) of hazardous and mixed waste were shipped off site for disposal. (See Table ECS-5.)

Nonhazardous, Regulated Waste Management. Nonradioactive, nonhazardous material was shipped off site to solid waste management facilities in 2014. Certain components of this waste (lead-acid batteries and spent lamps [i.e., universal wastes]) were reclaimed or recycled at off-site, authorized reclamation and recycling facilities. (See Table ECS-5.) Treated industrial wastewater was routinely sampled and discharged to Erdman Brook in compliance with the WVDP’s SPDES permit through October 2014. With the transfer from surface water to groundwater for a water supply in late September 2014, the generation of several non-radiological wastewater streams was eliminated and routine discharges ceased. Sanitary waste was shipped to the Buffalo Sewer Authority or Gowanda sewage treatment plant for treatment and disposal. (See Table ECS-5.)

Waste Minimization and Pollution Prevention. The annual pollution prevention progress report was submitted to DOE summarizing information for the pollution prevention tracking and reporting system. Reports are submitted to DOE and NYSDEC to document hazardous waste reduction efforts.

Construction and Demolition Debris Landfill (CDDL) Activities. The CDDL was closed in 1986 under a NYSDEC-approved closure plan for a nonradioactive solid waste disposal facility. To note the overall conditions of the grounds, the CDDL was inspected in 2014, with no concerns noted. Over time, the north plateau strontium-90 plume has migrated from the MPPB into the CDDL area and beyond. In 2010, a full-scale PTW was installed, south of the CDDL. Construction of the PTW did not impact the CDDL. See “Strontium-90 Plume Remediation Activities” in Chapter 4.

Environmental Issues

Unplanned Releases. There were no unplanned waterborne or airborne releases of nonradiological or radiological constituents from the WVDP in 2014 (as noted in Tables ECS-6 and ECS-9).

Environmental Protection Agency (EPA) Approval to Use Environmental Measurements for National Emission Standards for Hazardous Air Pollutants (NESHAP) Compliance. In prior years, radiological NESHAP compliance at the WVDP was demonstrated by (1) measuring (and/or estimating) radiological emissions in air released from the site during the CY of interest and (2) using EPA-approved computer models to estimate dose to the maximally exposed off-site individual (MEOSI). This method is referred to as the “measure and model” approach, and is most suitable for point sources of air emissions such as stacks or ducts. Resulting dose estimates for the WVDP have always been far below the 10-millirem (mrem)/year compliance standard. (See Chapter 3 for a discussion of dose assessment methodology.)

NESHAP regulations in Title 40 Code of Federal Regulations (CFR) Part 61, Subpart H allow (with prior EPA approval) for use of an alternate method of demonstrating compliance by measuring environmental concentrations (ambient monitoring) of airborne radionuclides at
critical receptor locations. As WVDP facilities continue to be decommissioned or demolished, the alternative approach of environmental air sampling has become the more appropriate method.

DOE submitted an updated request to EPA in February 2009 for approval to use environmental air measurements to demonstrate NESHAP compliance at the WVDP. The plan included a one-year period of using both the “measure and model” and the “environmental measurement” approach to demonstrate equivalency and confirm compliance. Both approaches were compared in 2013, demonstrating that either method could reliably be used to confirm compliance with air emissions regulations. In March 2015 the EPA approved use of the “environmental measurement” approach, using the 2014 ambient air monitoring network data to demonstrate compliance in the CY 2014 NESHAP report. (See additional discussion in Chapter 3, Dose Assessment.)

The ambient air monitoring network was installed with the system undergoing operational baselining and equipment testing in 2012. The second full year of routine monitoring with the new ambient air network was completed in 2014. The network consists of 16 ambient air low-volume sampling stations (one for each of the 16 compass sectors), strategically located and operated in areas that provide coverage for airborne radiological environmental measurements to support NESHAP compliance during demolition activities. In addition, one high-volume sampler, which can measure lower concentrations, is colocated in the sector most often identified as the critical receptor. This sampler serves as an independent source of data for comparison with the compliance network data at that location.

Ambient air continues to be monitored at a background location in Great Valley, although data from this sampler is not used to demonstrate NESHAP compliance under normal operating conditions. The 2014 data from the ambient air monitoring network and the Great Valley background location are included in Appendix C and discussed in Chapter 2. With EPA approval, potential dose from the airborne pathway for NESHAP compliance was estimated using the ambient air monitoring data exclusively in 2014, as described in Chapter 3.

Safety Inspections of the WNYNSC Dams. The two dams located on the WNYNSC property are maintained to provide backup fire-suppression water for the WVDP. The WVDP rail spur and an access roadway are located parallel to the lakes and run along the crest of both dams.

A severe rain event in August 2009 caused flood damage to areas of the lakes, dams, and spillway. Since this event, the standard operating procedure for maintenance, inspection, and operation of the dams and spillway was enhanced. Based on previous inspection results, it was determined that repairs to the Lake 1 spillway and repairs to the Lake 2 dam were needed. NYSDEC issued a permit for the Lake 1 spillway repairs in June 2014 and this project was authorized by the USACE under a nationwide permit. A permit for the Lake 2 dam repairs was issued by NYSDEC in July 2014. The repairs to the spillway and dam were completed during CY 2014. Additional repairs were also made to the 18-ft culvert on Buttermilk Creek under the WVDP railspur.

Project Assessment Activities in 2014

Throughout CY 2014, assessments were conducted through the Integrated Assessment Program (IAP) at the WVDP. This program effectively complies with applicable DOE directives, regulations, standards, Integrated Safety Management System (ISMS) and Environmental Management System (EMS) requirements. The IAP applies to all disciplines including, but not limited to, safety and health, operations, maintenance, environmental protection, quality, decontamination and decommissioning (D&D), HLW activities, emergency management, business processes, and management. Inspections, reviews, and oversight activities are routinely conducted to evaluate performance, reduce risk, and identify improvement opportunities.

DOE-WVDP and other agencies with responsibilities for the WVDP also independently reviewed various aspects of the environmental and waste management programs. In November 2014, EPA performed a multi-media inspection of the WVDP including the following program areas: RCRA waste management operations, Clean Water Act system permit operations and storm water management, spill prevention control and countermeasures, petroleum bulk storage, emergency response, and training. The inspector noted that the facility appeared to be in good overall condition and discussed several observations which have been addressed by the site.

Overall assessment results reflected continuing, well-managed environmental programs at the WVDP.
TABLE ECS-1

Compliance Status Summary for the WVDP in CY 2014

<table>
<thead>
<tr>
<th>Citation</th>
<th>Environmental Statute, DOE Directive, EO, Agreement</th>
<th>WVDP Compliance Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 United States Code (USC) §2011 et seq.</td>
<td>The AEA of 1954 was enacted to assure the proper management of source, special nuclear, and by-product materials. The AEA and the statutes that amended it delegate the control of nuclear energy primarily to DOE, NRC, and EPA.</td>
<td>See discussions of the WVDP Act, DOE Orders 435.1, and 458.1</td>
</tr>
<tr>
<td>Public Law 96-368</td>
<td>The WVDP Act of 1980 authorized DOE to carry out a HLW demonstration project at the WNYNSC (the Center) in West Valley, New York.</td>
<td>DOE is focusing on goals that will lead to completion of responsibilities listed in the WVDP Act.</td>
</tr>
<tr>
<td>Cooperative Agreement between DOE and NYSERDA</td>
<td>The Cooperative Agreement between DOE and NYSERDA established a cooperative framework for implementing the WVDP Act, effective October 1980, as amended in September 1981. In 1990, the first supplemental agreement was signed by DOE and NYSERDA which set forth specific provisions for preparing a joint EIS. A second supplemental agreement to the Cooperative Agreement was drafted in January 2010 and issued by DOE and NYSERDA in March 2011.</td>
<td>Except as delineated in specific sections of the agreement, DOE was given sole responsibility to carry out the requirements of the WVDP Act. The DOE ROD was issued in April 2010 for the WVDP and the WNYNSC. There are no current activities being conducted under the 1990 Supplemental Agreement. In accordance with the second supplemental agreement, Phase 1 studies were conducted in 2014.</td>
</tr>
<tr>
<td>WVDP MOU between DOE and NRC</td>
<td>The 1981 MOU, mandated by the WVDP Act, established procedures for review and consultation by NRC with respect to activities conducted at the WNYNSC by DOE. The agreement encompassed development, design, construction, operation, and D&D activities associated with the Project as described in the WVDP Act. Under the WVDP Act, and to satisfy commitments made to NRC, DOE was required to prepare a DP for the Project and submit it to NRC for review.</td>
<td>In 2002, NRC issued "Decommissioning Criteria for the WVDP (M-32) at the West Valley Site; Final Policy Statement" (67 FR 5003). The "Phase 1 DP for the West Valley Demonstration Project" was prepared by DOE and submitted to NRC in December 2008, and March and December, 2009. In February 2010, NRC issued a TER on DOE's Phase 1 DP. NRC conducted monitoring visits at the WVDP in March, August, and November 2014.</td>
</tr>
<tr>
<td>DOE Order 231.1B</td>
<td>DOE Order 231.1B, Environment, Safety, and Health Reporting (updated and approved on June 27, 2011 with Change 1 issued on November 28, 2012), was issued to ensure that DOE and National Nuclear Security Administration receives timely and accurate information about events that could adversely affect the health, safety, and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. (continued on next page)</td>
<td>This WVDP Annual Site Environmental Report (ASER) is prepared and submitted annually to DOE Headquarters (HQ), regulatory agencies, and interested stakeholders in compliance with DOE Order 231.1B.</td>
</tr>
</tbody>
</table>

(continued on next page)
TABLE ECS-1 (continued)

Compliance Status Summary for the WVDP in CY 2014

<table>
<thead>
<tr>
<th>Citation</th>
<th>Environmental Statute, DOE Directive, EO, Agreement</th>
<th>WVDP Compliance Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Order 231.1B (continued)</td>
<td>This is accomplished through timely collection, reporting, analysis, and dissemination of data pertaining to environment, safety, and health issues as required by law or regulations, or in support of U.S. political commitments to the International Atomic Energy Agency (IAEA).</td>
<td></td>
</tr>
<tr>
<td>DOE Order 458.1</td>
<td>DOE Order 458.1, Radiation Protection of the Public and the Environment (including Change 3, January 15, 2013), replaced DOE Order 5400.5 and established requirements to protect the public and environment against undue risk from radiation associated with radiological activities conducted under control of DOE pursuant to the AEA, by ensuring that: (1) operations are conducted to limit radiation exposure to members of the public pursuant to limits established in the Order, (2) radiological clearance of DOE real and personal property is controlled, (3) potential radiation exposures to members of the public are as low as reasonably achievable (ALARA), (4) routine and nonroutine releases are monitored and dose to the public is assessed, and (5) the environment is protected from the effects of radiation and radioactive material. This ASER summarizes radiological estimates of dose to the public and the environment, and compares these values with release and dose standards established by this Order. In 2014, estimated doses from airborne and waterborne releases to the MEOSI were <0.55% of the 100-millirem (mrem) standard.</td>
<td></td>
</tr>
<tr>
<td>DOE Order 435.1</td>
<td>DOE Order 435.1, Radioactive Waste Management, originally issued in 1999, with Change 1 issued in 2001, ensures that all DOE radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment, and complies with applicable state, federal, and local laws and regulations. Under the Order, sites that manage radioactive waste are required to develop, document, implement, and maintain a site-wide radioactive waste management program which includes actions to minimize radioactive waste generation. The WVDP maintains program documentation separately for each waste type. Management of HLW was conducted in accordance with the "WVDP Waste Acceptance Manual;" TRU waste was managed in accordance with the "TRU Waste Management Program Plan;" LLW was managed as summarized in the "LLW Management Program Plan;" and the radioactive component of mixed LLW was managed as summarized in the "Site Treatment Plan (STP) FY 2014 Update."</td>
<td></td>
</tr>
</tbody>
</table>
TABLE ECS-1 (continued)

Compliance Status Summary for the WVDP in CY 2014

<table>
<thead>
<tr>
<th>Citation</th>
<th>Environmental Statute, DOE Directive, EO, Agreement</th>
<th>WVDP Compliance Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Order 436.1, and EOs 13423 and 13514</td>
<td>DOE Order 436.1, Departmental Sustainability, May 2, 2011 replaced DOE Orders 450.1A and 430.2B. The Order also incorporates the initiatives of EOs 13423 and 13514, which provide requirements and responsibilities for managing sustainability within DOE to (1) ensure the DOE carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges, and advances sustainable, efficient and reliable energy for the future, (2) institute cultural change to factor sustainability and greenhouse gas (GHG) reductions into all DOE decisions, (3) ensure DOE achieves the sustainability goals established in its Strategic Sustainability Performance Plan (SSPP) pursuant to applicable laws, regulations, and EOs.</td>
<td>The WVDP supports the objectives of DOE Order 436.1, and has an established culture of environmental stewardship through its EMS. Pollution prevention, waste minimization, and energy efficiency have been incorporated into the culture through standard practices, procedures, training, and encouraging new ideas. In December 2014, DOE-WVDP submitted the "WVDP FY 2015 Site Sustainability Plan" to DOE-HQ, which outlined performance status and planned goals to support DOE's sustainability mission. Refer to Chapter 1, "Environmental Management System." CHBWW, the WVDP Phase 1 decommissioning and facilities disposition contractor, received a Certificate of Registration for the International Organization for Standardization (ISO) 14001:2004 certification of its EMS on July 31, 2012. The EMS was audited in 2014. The 2014 audit determined that the core elements of the EMS were documented and implemented.</td>
</tr>
<tr>
<td>Title 10 Code of Federal Regulations (10 CFR) Part 830, Subpart A</td>
<td>10 CFR Part 830, Nuclear Safety Management, Subpart A, Quality Assurance Requirements, and DOE Order 414.1D, Quality Assurance, provide the quality assurance (QA) program policies and requirements applicable to WVDP activities.</td>
<td>A QA program that provides a consistent system for collecting, assessing, and documenting data pertaining to radionuclides in the environment continued to be implemented at the WVDP. In 2014 the WVDP updated the QA project plan for environmental measurements of radionuclide air concentrations at the WVDP.</td>
</tr>
<tr>
<td>42 USC §4321 et seq., and 10 CFR Part 1021</td>
<td>The NEPA of 1969 and as amended in 1970, established a national policy to ensure that protection of the environment is included in federal planning and decisionmaking. The President's Council on Environmental Quality established a screening system of analyses and documentation that requires each proposed action to be categorized according to the extent of its potential environmental impact.</td>
<td>NEPA documents are prepared at the WVDP to describe potential environmental effects associated with proposed activities. The level of documentation depends upon whether the action constitutes a major federal action significantly affecting the quality of the human environment within the meaning of NEPA. During 2014, NEPA environmental checklists were prepared for routine WVDP maintenance, waste management and other site activities. It was concluded that none of these activities have a significant impact on the human environment.</td>
</tr>
<tr>
<td>Citation</td>
<td>Environmental Statute, DOE Directive, EO, Agreement</td>
<td>WVDP Compliance Status</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>Environmental Conservation Law (ECL), 6 NYCRR Part 617 NYS</td>
<td>The NY SEQR Act of January 1, 1996, enacted in September 1976 and as amended on June 26, 2000, requires adequate environmental review and assessment of whether a proposed action has the potential to have a significant environmental impact, prior to a decision regarding the action. Where a project involves both NYS and federal approvals, it is preferred to coordinate the SEQR and NEPA processes.</td>
<td>The SEQR process is an action-forcing statute that requires state agencies to incorporate environmental considerations directly into their decisionmaking, and where necessary, to modify that action to mitigate adverse environmental effects. Coordinated efforts were made at the WVDP to effectively utilize information from the federal EIS process to make the required SEQR Findings Statement for the WVDP and WNYNSC, which was issued in May 2010.</td>
</tr>
<tr>
<td>42 USC §6901 et seq., and NYS ECL, 6 NYCRR Chapter 4, subchapter B</td>
<td>The RCRA of 1976 and the NYS Solid Waste Disposal Act (NY ECL Article 27 [Title 9]) govern the generation, storage, handling, and disposal of hazardous wastes and closure of systems that handle these wastes. RCRA was enacted to ensure that hazardous wastes are managed in a way that protects human health, safety, and the environment. Generation, storage, handling, treatment, and disposal of hazardous waste, and closure of systems that handle hazardous waste at the WVDP, are conducted in accordance with the RCRA interim status regulations. NYSDEC performed a RCRA hazardous waste compliance inspection of the WVDP facilities in March 2014 and reported no violations. In April 2014, DOE performed a surveillance to review the management of mixed waste, including mixed transuranic waste. The surveillance identified two comments with no corrective actions needed.</td>
<td></td>
</tr>
<tr>
<td>Amendment to 42 USC §6961, NYS ECL, and NYSDEC Administrative Order on Consent with DOE</td>
<td>The FFCA of 1992 (an amendment to RCRA) requires DOE facilities to prepare an STP for treating mixed waste inventories to meet land disposal restrictions and to annually update the plan to account for changes in mixed waste inventories, capacities, and treatment technologies. DOE entered into a Consent Order with NYSDEC for the WVDP in 1996. The FFCA and the FFCA Consent Order requires completing milestones identified in the STP volume. The WVDP STP for FY 2014 update was submitted to NYSDEC in February 2015. Refer to "Mixed Waste Management," earlier in this chapter.</td>
<td></td>
</tr>
<tr>
<td>Docket No. II RCRA 3008(h) Administrative Order on Consent with EPA (lead agency) and NYSDEC in March 1992. The state and federal RCRA regulations authorize the agencies to issue orders requiring RCRA corrective actions associated with the potential releases of hazardous waste and/or hazardous constituents from SWMUs at the WNYNSC.</td>
<td>Written procedures and site activities are compliant with the Consent Order. In accordance with the Consent Order, DOE submits quarterly reports to EPA and NYSDEC that summarize all RCRA §3008(h) activities and progress conducted at the WVDP for the representative quarter. A discussion of CY 2014 activities is presented earlier in this chapter.</td>
<td></td>
</tr>
<tr>
<td>Citation</td>
<td>Environmental Statute, DOE Directive, EO, Agreement</td>
<td>WVDP Compliance Status</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>RCRA 3016 Statute</td>
<td>The RCRA 3016 Statute applies to all federal hazardous waste facilities currently owned or operated by the government. It requires that facility hazardous waste information be submitted to EPA and authorized states every two years. WVDP facility hazardous waste activities are reported biennially to EPA and NYSDEC. The RCRA 3016 Biennial Report for CY 2013 was submitted on January 27, 2014. The next biennial report will cover waste activities for CY 2015.</td>
<td></td>
</tr>
<tr>
<td>42 USC §7401 et seq.; 40 CFR 61, Subpart H; and 6 NYCRR Chapter 3, Air Resources</td>
<td>The Clean Air Act of 1970 and the NYS ECL regulate the release of air pollutants through permits and air quality limits. Emissions of radionuclides are regulated by EPA via the NESHAP regulations. On April 5, 1995, DOE and EPA entered into an MOU concerning the Clean Air Act Emission Standards for Radionuclides 40 CFR Part 61 including Subparts H, I, Q, and T. Nonradiological emissions are permitted under 6 NYCRR Part 201-4 (Minor Facility Registrations). DOE maintained seven NESHAP permits for radiological emissions and one Air Facility Registration Certificate for nonradiological emissions at the WVDP. The annual NESHAP Report summarizing radiological emissions and estimated dose was submitted to the EPA. Estimated dose to the critical receptor from radiological air emissions during 2014 was <0.52 mrem, far below the 10-mrem Subpart H standard. Refer to Chapter 3, "Dose Assessment," for discussion.</td>
<td></td>
</tr>
<tr>
<td>33 USC §1251 et seq. and NYS ECL and 6 NYCRR Chapter 10</td>
<td>The Federal Water Pollution Control Act of 1977 (Clean Water Act [CWA]) and NYS ECL (Article 17 [Title 8]) seek to improve surface water quality by establishing standards and a system of permits. Wastewater and storm water discharges are regulated by NYSDEC through the SPDES permit. Discharges of fill material are regulated through permits issued by the USACE and water quality certifications issued by NYSDEC. Monthly SPDES Discharge Monitoring Reports (DMRs) are submitted to NYSDEC. A new SPDES permit became effective on July 1, 2011. Industrial wastewater was monitored for chemical constituents during lagoon discharges (outfall 001), and other treated industrial wastewaters were monitored at outfall 007. SPDES-permitted storm water monitoring was completed during 2014 by sampling the eight drainage basins during storm events. During 2014, all results were within the effluent discharge limits specified in the SPDES permit.</td>
<td></td>
</tr>
<tr>
<td>NYS ECL Article 17, Titles 7 and 8, and ECL Article 70</td>
<td>NYS ECL Article 17 (Titles 7 and 8), and ECL Article 70 regulate storm water discharges related to construction activity. DOE submitted to NYSDEC a NOI and a Storm Water Pollution Prevention Plan (SWPPP) for storm water discharges associated with construction activities for the construction of a high level waste canister storage pad at the WVDP. The Notice of Termination was submitted for the storm water permit in June 2014.</td>
<td></td>
</tr>
</tbody>
</table>
Table ECS-1 (continued)

Environmental Status Summary for the WVDP in CY 2014

<table>
<thead>
<tr>
<th>Citation</th>
<th>Environmental Statute, DOE Directive, EO, Agreement</th>
<th>WVDP Compliance Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYS Navigation Law and NYS ECL</td>
<td>NYS ECL Article 17 (Titles 10 and 17), 6 NYCRR 612–614 and Parts 595–599, and 6 NYCRR Subpart 360-14 regulate design, operation, inspection, maintenance, and closure of aboveground and underground petroleum bulk storage (PBS) and chemical bulk storage (CBS) tanks. These laws also regulate spill reporting and cleanup. Under terms of a 1996 agreement, amended in 2005, DOE is not required to report a spill of petroleum product onto an impervious surface if the spill is less than five gal and is cleaned up within two hours of discovery.</td>
<td>The last CBS tank at the WVDP was closed under these regulations in 2006. There remain nine registered PBS tanks (eight aboveground storage tanks [ASTs] and one underground storage tank [UST]) that are periodically inspected and maintained. Spills are reported and cleaned up in accordance with WVDP policies and procedures. There was one immediately reportable spill during 2014. There were 5 small spills (less than five gal [18.9 L] each) during CY 2014, which did not require immediate notification to NYSDEC, but were reported in quarterly reports.</td>
</tr>
<tr>
<td>EO 11990</td>
<td>EO 11990, Protection of Wetlands, directed federal agencies to avoid, where possible, impacts (e.g., destruction, modification, or new construction) that would adversely effect wetlands wherever there is a practical alternative. Activities in wetlands are regulated by the USACE and NYSDEC permits. The wetlands on the WVDP are subject to regulation under Section 404 of the CWA and NYS ECL Articles 24 and 36.</td>
<td>Wetlands are periodically identified and delineated on the WVDP. In 2006, the USACE confirmed that 34.09 acres (13.8 ha) of wetlands, subject to federal jurisdiction, exist within and adjacent to the WVDP. A wetland complex of 17.4 acres (7.0 ha) is subject to NYSDEC jurisdiction. During 2014, no new wetlands were delineated and no wetlands were impacted by construction activities.</td>
</tr>
<tr>
<td>42 USC §9601 et seq.</td>
<td>The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, including the Superfund Amendments and Reauthorization Act of 1986 [SARA]) provided the regulatory framework for remediation of releases of hazardous substances and remediation of inactive hazardous waste disposal sites.</td>
<td>Based on the results of a Preliminary Assessment Report prepared for DOE, it was determined that the WVDP did not qualify for listing on the national priorities list. Therefore, no further investigation pursuant to CERCLA was warranted. However, if a hazardous substance spill exceeds a reportable quantity, CERCLA reporting requirements would be triggered.</td>
</tr>
<tr>
<td>42 USC §11001 et seq.</td>
<td>The Emergency Planning and Community Right-to-Know Act (EPCRA) of 1986 (also known as SARA Title III) was designed to create a working partnership between industry, business, state, and local government, and emergency response representatives to help local communities protect public health, safety, and the environment from chemical hazards.</td>
<td>Chemical inventories for the WVDP are reported quarterly under EPCRA, as appropriate. Refer to Tables ECS-7 and ECS-8.</td>
</tr>
</tbody>
</table>
TABLE ECS-1 (continued)
Compliance Status Summary for the WVDP in CY 2014

<table>
<thead>
<tr>
<th>Citation</th>
<th>Environmental Statute, DOE Directive, EO, Agreement</th>
<th>WVDP Compliance Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 USC §300f et seq.</td>
<td>The Safe Drinking Water Act of 1974 requires that each federal agency operating or maintaining a public water system must comply with all federal, state, and local requirements regarding safe drinking water. Compliance in NYS is verified by oversight of the NYSDOH, through NYS Public Health Law, and the Cattaraugus County Health Department (CCHD).</td>
<td>The WVDP operates a nontransient, noncommunity public drinking water system serving a population of less than 500. All CY 2014 results from analyses of drinking water were reported within limits to the CCHD. The CCHD routinely performs inspections of the treatment and distribution system. The WVDP installed two groundwater wells that began providing potable water for the site in 2014. Previously, a surface water source was used.</td>
</tr>
<tr>
<td>10 CFR Part 851</td>
<td>10 CFR 851 Worker Safety and Health Program of 2006 requires DOE contractors to provide workers with a safe and healthful workplace. To accomplish this objective, the rule established program requirements specific to management responsibilities, worker rights, hazard identification and prevention, safety health standards, required training, recordkeeping, and reporting.</td>
<td>Procedures and programs are revised to maintain requirements that comply with 10 CFR 851. Any proposed modification that may invalidate a portion of the worker health and safety program at the WVDP must be approved by DOE-WVDP. The plan was reviewed in July 2014, and it was determined that no changes to the current plan were necessary.</td>
</tr>
<tr>
<td>10 CFR Part 835</td>
<td>10 CFR Part 835, Occupational Radiation Protection, amended May 2011, established radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of DOE activities.</td>
<td>The document "CH2MHILL-B&W West Valley, LLC Documented Radiation Protection Program and Implementation for 10 CFR Part 835, as amended May 2011" was last revised in February 2012.</td>
</tr>
<tr>
<td>15 USC §2601 et seq., and 12 NYCRR Part 56</td>
<td>The Toxic Substances Control Act of 1976 regulates the manufacture, processing, and distribution of chemicals, including asbestos-containing material (ACM) and polychlorinated biphenyls (PCBs). Effective September 2006, the NYS Department of Labor (NYSDOL) significantly revised the asbestos regulations, cited in 12 NYCRR Part 56. As a result, operating procedures were revised, special training for asbestos workers was conducted, and the WVDP applied for and was granted site-specific variances.</td>
<td>ACM activities were managed in accordance with the site "Asbestos Management Plan" and activities were completed by personnel certified by NYSDOL. Refer to Table ECS-5 for a summary of asbestos waste management activities. PCBs are managed in accordance with the WVDP document "PCB and PCB-Contaminated Material Management Plan." The WVDP operators maintain an annual document log that details PCB use and changes in storage or disposal status.</td>
</tr>
</tbody>
</table>
TABLE ECS-1 (continued)
Compliance Status Summary for the WVDP in CY 2014

<table>
<thead>
<tr>
<th>Citation</th>
<th>Environmental Statute, DOE Directive, EO, Agreement</th>
<th>WVDP Compliance Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 USC §136 et seq.</td>
<td>The Federal Insecticide, Fungicide, and Rodenticide Act of 1996 and NYS ECL provide for EPA and NYSDEC control of pesticide distribution, sale, and use.</td>
<td>Chemical pesticides are applied at the WVDP only after alternative methods are evaluated by trained and NYSDEC-certified professionals and determined to be unfeasible. Herbicides were used at the WVDP during June and October 2014. No paraquat dichloride, the active ingredient in the herbicide used at the WVDP, was detected in the storm water outfall samples collected in 2014 following these applications.</td>
</tr>
<tr>
<td>NYS ECL, Article 15, Title 5, et seq.</td>
<td>NYS ECL, Article 15, Title 5, Protection of Water regulates the safety of dams and other surface water impounding structures, including construction, inspection, operation, maintenance, and modification of these structures. Revised dam safety regulations became effective on August 19, 2009. The dams maintained by the WVDP, on the WNYNSC property, are classified as Class A - low-hazard dams.</td>
<td>Two surface water impounding dam structures are located on the WNYNSC: NYS Atomic Development Dam #1 (DEC Dam ID #019-3149) and NYS Atomic Development Dam #2 (DEC Dam ID #019-3150). Repairs for the Lake 1 Spillway and Lake 2 Dam were performed in CY 2014. Routine maintenance and inspections were also performed.</td>
</tr>
<tr>
<td>NYS ECL Article 15, Title 33, Part 675</td>
<td>NYS ECL, Article 15, Title 33 Water Withdrawal Reporting requires that any person who withdraws or is operating any system or method of withdrawal that has a capacity to withdraw more than 100,000 gal (378,541 L) of groundwater or surface water per day shall file an annual report with NYSDEC. The legislation was enacted to gain more complete information for managing the state’s water resources.</td>
<td>A nontransient, noncommunity public water supply system for drinking water and operational purposes is maintained and operated at the WVDP. In compliance with the legislation, the water withdrawal reporting forms for 2014 were submitted to NYSDEC in March 2015. The WVDP withdrew an average of 58,784 gal/day (222,522 L/day).</td>
</tr>
<tr>
<td>49 CFR Part 172, and 6 NYCRR Part 364.9</td>
<td>6 NYCRR Part 364.9 regulates handling and storage of potentially infectious regulated medical waste. 49 CFR Part 172, Subpart H regulates transportation safety and disposal of regulated medical waste at a licensed facility.</td>
<td>The on-site health services office is registered with NYS as a “Small Quantity Generator” of regulated medical waste. Medical services generate potentially infectious medical wastes that are securely stored in approved biohazard containers and are handled and controlled by authorized personnel.</td>
</tr>
</tbody>
</table>
TABLE ECS-1 *(concluded)*
Compliance Status Summary for the WVDP in CY 2014

<table>
<thead>
<tr>
<th>Citation</th>
<th>Environmental Statute, DOE Directive, EO, Agreement</th>
<th>WVDP Compliance Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 USC §703 et seq. and EO 13186</td>
<td>The Migratory Bird Treaty Act of 1918 implemented various treaties and conventions between the U.S. and foreign countries for the protection of migratory birds. Under the Act, taking, killing, or possessing migratory birds is unlawful.</td>
<td>DOE maintains a U.S. Fish and Wildlife Bird Depredation Permit for the WVDP.</td>
</tr>
<tr>
<td>16 USC §1531 et seq., and 6 NYCRR Part 182</td>
<td>The Endangered Species Act of 1973 provided for the conservation of endangered and threatened species of fish, wildlife, and plants. (See also 6 NYCRR Part 182, Endangered and Threatened Species of Fish and Wildlife; Species of Special Concern.)</td>
<td>Several ecological surveys of the WNYSNC premises have been conducted. Except for "occasional transient individuals," no plant or animal species protected under the Endangered Species Act are known to reside at the Center.</td>
</tr>
<tr>
<td>16 USC §470</td>
<td>The National Historic Preservation Act of 1966 established a program for the preservation of historic properties throughout the nation.</td>
<td>Surveys of the WNYSNC have been conducted for historic and archaeological sites. Surveys revealed American Indian and historic homestead artifacts, consistent with the area.</td>
</tr>
<tr>
<td>EO 11988</td>
<td>EO 11988, Floodplain Management, was issued to avoid adverse impacts associated with the occupancy and modification of floodplains and to avoid direct or indirect support of floodplain development wherever there is a practicable alternative.</td>
<td>No activities were performed during 2014 at the WVDP that would develop or be adversely impacted by the 100-year floodplain within the premises.</td>
</tr>
<tr>
<td>Stipulation Pursuant to NYS ECL Section 17-0303, and Section 176 of the Navigation Law</td>
<td>In accordance with Stipulation No. R9-4756-99-03, dated March 1999, DOE agreed to install a soil bioventing system to remediate petroleum contaminated soils in the warehouse UST site (NYSDEC Spill number 9708617). The remediation plan was to construct a bioventing system, operate it for two years, assess performance, and report to NYSDEC.</td>
<td>The system stimulated in-situ biodegradation of petroleum hydrocarbons in the soil by providing abundant oxygen to existing microorganisms. After reviewing soil and water sampling data and evaluations, NYSDEC determined that no further remediation was required. The system was removed in 2014. A determination regarding the potential need for additional future actions will be made consistent with Phase 2 decisionmaking under the NEPA process.</td>
</tr>
<tr>
<td>6 NYCRR Part 360</td>
<td>NYS ECL Solid Waste Management Facility Regulations define requirements for closure of nonradioactive solid waste disposal facilities in a manner that protects the environment.</td>
<td>Per a 1986 NYSDEC approved engineering closure plan, the CDDL was closed. As required by the plan, the CDDL cover was inspected in 2014 and all areas were found to be in good condition.</td>
</tr>
<tr>
<td>Year</td>
<td>Action</td>
<td>Outcome</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>1982</td>
<td>The FEIS, "Final Environmental Impact Statement: Long-Term Management of Liquid High-Level Radioactive Wastes Stored at the WNYNSC, West Valley (DOE/EIS-0081)" and associated ROD were issued outlining the actions DOE proposed for solidification of the liquid HLW contained in the underground tanks.</td>
<td>The initial period of WVDP Act work activities, completed in September 2002, removed the HLW from the tanks and immobilized it into borosilicate glass through VIT. The canisters of vitrified HLW remain on site in storage.</td>
</tr>
<tr>
<td>1988</td>
<td>DOE and NYSERDA published a NOI to prepare the EIS for "Completion of the WVDP and Closure or Long-Term Management of the Facilities at the WNYNSC (the Center)."</td>
<td>The DEIS was issued in 1996.</td>
</tr>
<tr>
<td>1996</td>
<td>DOE and NYSERDA issued the "Draft EIS for the Completion of the WVDP and Closure or Long-Term Management of the Facilities at the WNYNSC" (DOE/EIS-0226-D).</td>
<td>The DEIS was issued without a preferred alternative for a six-month review and comment period. After issuing the DEIS, and despite long negotiations, DOE and NYSERDA were unable to reach an agreement on the future course of action for closure at the Center (see Government Accounting Office, 2001).</td>
</tr>
<tr>
<td>1997</td>
<td>Following issuance of the 1996 DEIS, NYSERDA and DOE formed a stakeholder advisory group (the West Valley Citizen Task Force) to provide additional input to the public comment process required by the NEPA.</td>
<td>The Citizen Task Force's mission is to provide stakeholder input to decisionmaking for development of a closure option for the WVDP and the WNYNSC.</td>
</tr>
<tr>
<td>1997</td>
<td>DOE-HQ issued the “Final Waste Management Programmatic EIS,” (WM PEIS [DOE/EIS-0200F]) to evaluate nationwide management and siting alternatives for treatment, storage, and disposal of five types of radioactive and hazardous waste.</td>
<td>The WM PEIS (DOE/EIS-0200F) was issued with the intent to issue a separate ROD for each type of waste generated, stored, or buried over the next 20 years at 54 sites in the DOE complex.</td>
</tr>
<tr>
<td>1999</td>
<td>DOE issued a ROD for nationwide management of HLW, Vol. 64, FR, p. 46661 (64 FR 46661).</td>
<td>The ROD specified that WVDP-vitrified HLW will remain in storage on site until it is accepted at a geologic repository.</td>
</tr>
<tr>
<td>2000</td>
<td>DOE issued a ROD for nationwide management of LLW and mixed LLW (65 FR 10061).</td>
<td>The Hanford site in Washington State and the Nevada Test Site were designated as national DOE disposal sites for LLW and mixed LLW.</td>
</tr>
<tr>
<td>2001</td>
<td>DOE published an NOI (66 FR 16447) formally announcing its rescoping plan for preparing the waste management EIS for the WVDP. DOE published an Advance NOI (66 FR 56090), announcing in advance, its intention to prepare an EIS for Decommissioning and/or Long-Term Stewardship at the WVDP and the WNYNSC.</td>
<td>The rescoping plan split the scope of the 1996 WVDP DEIS into two phases: (1) near-term waste management decisionmaking and (2) final decommissioning and/or long-term stewardship decisionmaking. The advanced NOI informed interested parties of a pending EIS and provided opportunity for public comments early in the process.</td>
</tr>
</tbody>
</table>
TABLE ECS-2 (continued)
NEPA Documents Affecting DOE Activities at the WVDP

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>DOE issued a notice of availability of the "WVDP Draft Waste Management EIS" (68 FR 26587).</td>
<td>The DEIS presented alternatives for near-term management of WVDP LLW, mixed LLW, TRU waste, and HLW. Based on comments during the scoping process and the complexity of issues relating to long-term agency responsibility, this EIS was delayed (DOE-EIS-0226-R).</td>
</tr>
<tr>
<td>2005</td>
<td>DOE issued a ROD, based on alternative A, for the "WVDP Waste Management EIS (WVDP WM EIS-0337)" (70 FR 35073).</td>
<td>The canisters of vitrified HLW will remain in storage on site until transfer to a geologic repository, the decision on TRU waste would be deferred until certification is obtained from the Waste Isolation Pilot Plant in Carlsbad, New Mexico, and LLW and mixed LLW would be shipped off site for disposal at commercial or DOE sites.</td>
</tr>
<tr>
<td>2005</td>
<td>On August 26, 2005, The Coalition filed a complaint in the U.S. District Court, Western District of New York, against DOE regarding the NEPA process at the WVDP. The Coalition contended that DOE's rescoping plan to split the 1996 WVDP DEIS violated NEPA and the Stipulation of Compromise. The Coalition also sought a declaration that DOE is not empowered to reclassify waste at the WVDP using the "waste incidental to reprocessing" determination.</td>
<td>On September, 28, 2007, the U.S. District Court, Western District of New York ruled to dismiss the complaint in its entirety. Refer to Case 1:05-cv-00614-JTC, Document 41, filed September 28, 2007 for the ruling.</td>
</tr>
<tr>
<td>2006</td>
<td>An EA (DOE/EA-1552) evaluated the proposed decontamination, demolition, and removal of select site facilities. A FONSI was issued.</td>
<td>The EA, with the FONSI, cleared the way for removal of 36 facilities that were (or in the next four years would be) no longer required to support WVDP activities.</td>
</tr>
<tr>
<td>2007</td>
<td>DOE issued an NOI to prepare an EIS for the disposal of Greater-Than-Class-C (GTCC) LLW (72 FR 40135). In March 2011, DOE issued the DEIS for the disposal of GTCC LLW and GTCC-like waste.</td>
<td>Nine scoping meetings were held throughout 2007; the draft was never issued. On February 25, 2011, a notice of availability for the GTCC DEIS was issued with the 120-day public comment period ending on June 27, 2011.</td>
</tr>
<tr>
<td>2008</td>
<td>DOE issued a notice of availability for the revised "Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the WVDP and WNYNSC (DOE/EIS-0226-D [Revised])" (73 FR 74160).</td>
<td>The DEIS evaluated the range of reasonable alternatives for decommissioning and/or long-term stewardship of the facilities at the Center. This DEIS is a revision of the 1996 Cleanup and Closure DEIS. This DEIS was distributed December 5, 2008, for a six-month public review period, which was extended through September 8, 2009.</td>
</tr>
</tbody>
</table>
TABLE ECS-2 (concluded)

NEPA Documents Affecting DOE Activities at the WVDP

<table>
<thead>
<tr>
<th>Year</th>
<th>Action</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>In January 2010, DOE issued the "Final EIS (FEIS) for Decommissioning and/or Long-Term Stewardship at the WVDP and WNYNSC (DOE/EIS-0226 [Revised])". On April 14, 2010, DOE issued the ROD for the FEIS, selecting the phased decisionmaking alternative as the preferred alternative. On May 12, 2010, NYSERDA issued a SEQR Findings Statement selecting the phased decisionmaking alternative as the preferred alternative.</td>
<td>In Phase 1 of the phased decisionmaking preferred alternative, DOE will decommission the MPPB, the VIT facility, RHWF, the wastewater treatment lagoons, and a number of other facilities. The Phase 2 decision will be made within 10 years of the EIS ROD.</td>
</tr>
<tr>
<td>2014</td>
<td>In early 2014, DOE and NYSERDA announced that a joint Supplemental EIS would be prepared for the Phase 2 decisions.</td>
<td>The integrated approach developed by DOE and NYSERDA for making the Phase 2 decision will incorporate probabilistic performance assessment to support the Phase 2 Decisionmaking Alternative for the WVDP and WNYNSC. A final request for proposal for this analysis was issued in April 2015.</td>
</tr>
<tr>
<td>Permit Name and Number</td>
<td>Agency / Permit Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>WVDP RCRA Part A Permit Application (EPA ID #NYD980779540)</td>
<td>NYSDEC Hazardous Waste</td>
<td>Provides interim status under RCRA for treatment and storage of hazardous waste.</td>
</tr>
<tr>
<td>6 NYCRR Part 373-2 (i.e., Part B) Permit Application (Rev. 1)</td>
<td>NYSDEC Hazardous Waste</td>
<td>Provides final status under RCRA for treatment and storage of hazardous waste.</td>
</tr>
<tr>
<td>Air Facility Registration Certificate (9-0422-00005/00099)</td>
<td>NYSDEC / Air Emissions</td>
<td>Certificate caps nitrogen oxide (NO_x) and sulfur oxide (SO_x) emissions from two boilers.</td>
</tr>
<tr>
<td>MPPB Ventilation (WVDP-687-01)</td>
<td>EPA / NESHAP</td>
<td>MPPB ventilation radionuclide emissions (originally the Liquid Waste Treatment System [LWTS])</td>
</tr>
<tr>
<td>VIT Facility Heating, Ventilation, and Air-Conditioning (HVAC) System (no permit number)</td>
<td>EPA / NESHAP</td>
<td>VIT Facility HVAC system for radionuclide emissions</td>
</tr>
</tbody>
</table>

Note: Permit and license expiration dates are current as of September 2015.
TABLE ECS-3 (continued)
WVDP Environmental Permits

<table>
<thead>
<tr>
<th>Permit Name and Number</th>
<th>Agency / Permit Type</th>
<th>Description</th>
<th>Updates</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Size-Reduction Facility (CSRF) (WVDP-287-01)</td>
<td>EPA / NESHAP</td>
<td>Contact size-reduction and decontamination facility radionuclide emissions</td>
<td>Ventilation not in service; ventilated with portable ventilation units (PVUs).</td>
<td>Approved on October 5, 1987. No expiration date. This system is inactive and being prepared for demolition.</td>
</tr>
<tr>
<td>RHWF (WVDP-RHWF Mod-001)</td>
<td>EPA / NESHAP</td>
<td>RHWF ventilation for radionuclide emissions</td>
<td>Permit issued to allow use of plasma arc cutting techniques in the RHWF.</td>
<td>Approved on April 18, 2012. No expiration date.</td>
</tr>
<tr>
<td>Replacement Ventilation System (RVS) (WVDP-RVS-MPPB-New-001)</td>
<td>EPA / NESHAP</td>
<td>Permit to construct a ventilation and emission system to replace the MPPB stack ventilation.</td>
<td>The first two Replacement Ventilation Units (RVUs) (single emission point) were functionally tested in June 2015.</td>
<td>Application was approved by EPA on March 25, 2015. No expiration date.</td>
</tr>
<tr>
<td>SPDES (NY0000973)</td>
<td>NYSDEC / Effluent water</td>
<td>Monitors discharges to surface waters from various on-site sources.</td>
<td>An amended SPDES permit was issued by NYSDEC, effective July 1, 2011.</td>
<td>The permit expires on June 30, 2016.</td>
</tr>
<tr>
<td>SPDES (GP-0-10-001)</td>
<td>NYSDEC / General permit for storm water discharges from construction activity.</td>
<td>Construction of HLW Cask Storage Pad.</td>
<td>A Notice of Intent to construct the HLW Cask Storage Pad was filed on August 8, 2013.</td>
<td>Final stabilization of disturbed areas was achieved. A Notice of Termination for the permit was filed with NYSDEC in 2014.</td>
</tr>
</tbody>
</table>

Note: Permit and license expiration dates are current as of September 2015.
<table>
<thead>
<tr>
<th>Permit Name and Number</th>
<th>Agency / Permit Type</th>
<th>Description</th>
<th>Updates</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuech’s Environmental Services, Inc. (Permit #9A-707)</td>
<td>Sanitary sewage sludge hauler permit</td>
<td>Permit issued to hauler of waste from the Wastewater Treatment Facility (WWTF).</td>
<td>Annual renewal in March.</td>
<td>Permit renewed in March 2015 and expires February 29, 2016.</td>
</tr>
<tr>
<td>Public Water System ID #NY0417557</td>
<td>CCHD</td>
<td>The WVDP is a nontransient noncommunity public drinking water system.</td>
<td>System was changed from a surface water source to a groundwater source in 2014.</td>
<td>No expiration date.</td>
</tr>
<tr>
<td>PBS (#9-008885)</td>
<td>NYSDEC / PBS tank registration</td>
<td>Registration of bulk storage tanks used for petroleum.</td>
<td>Diesel fuel tank FO-D-11 was permanently closed and removed from the license.</td>
<td>License expires September 2, 2016.</td>
</tr>
<tr>
<td>Asbestos-Handling License CHBWV #61646</td>
<td>NYS Dol / asbestos-handling and sampling activities</td>
<td>Asbestos contractors license with specific variances for handling and monitoring.</td>
<td>Renewed for CY 2015 in September 2014.</td>
<td>The license was renewed in 2014 and expires on September 30, 2015; each variance has a unique expiration date.</td>
</tr>
<tr>
<td>NYS Atomic Development Dam #1 (ID #019-3149)</td>
<td>NYSDEC Division of Water, Bureau of Flood Protection and Dam Safety</td>
<td>Two Class A Low-Hazard dams on the WNYNSC property, that supply water for drinking and operational purposes, are maintained at the WVDP.</td>
<td>The Lake 1 Spillway and Lake 2 Dam were repaired in 2014.</td>
<td>No expiration date.</td>
</tr>
<tr>
<td>NYS Atomic Development Dam #2 (ID #019-3150)</td>
<td>EPA Groundwater Compliance Section</td>
<td>EPA regulates injection of tracer solutions into groundwater wells.</td>
<td>Several wells in the north plateau PTW were used to inject sodium bromide tracer solution to estimate groundwater flow velocities.</td>
<td>On November 18, 2010, EPA authorized operation of injection wells.</td>
</tr>
</tbody>
</table>

Note: Permit and license expiration dates are current as of September 2015.
Environmental Compliance Summary

Table ECS-4

WVDP RCRA SSWMUs and Constituent SWMUs

Identified in the RFI under the RCRA 3008(h) Order on Consent

<table>
<thead>
<tr>
<th>SSWMU</th>
<th>SWMU #</th>
<th>Constituent SWMUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSWMU #1 – LLWTF</td>
<td>3, 4, 17, 17a, and 17b</td>
<td>Former lagoon 1; LLWTF; lagoons 2, 3, 4, and 5; neutralization pit; and interceptors</td>
</tr>
<tr>
<td>SSWMU #2 – Miscellaneous Small Units</td>
<td>5, 6, 7, and 10</td>
<td>Demineralizer sludge ponds and solvent dike; effluent mixing basin; and waste paper incinerator</td>
</tr>
<tr>
<td>SSWMU #3 – LWTS</td>
<td>18, 18a, 22, and Sealed Rooms</td>
<td>LWTS; cement solidification system; and specific sealed rooms in the MPPB (per the RFI Workplan and Current Conditions Report)</td>
</tr>
<tr>
<td>SSWMU #4 – HLW Storage and Processing Area</td>
<td>12/12a, 13, 19, and 20</td>
<td>WTF; VIT test facility waste storage tanks; STS; and VIT facility</td>
</tr>
<tr>
<td>SSWMU #5 – Maintenance Shop Leach Field</td>
<td>8</td>
<td>Maintenance shop leach field</td>
</tr>
<tr>
<td>SSWMU #6 – Low-Level Waste Storage Area</td>
<td>9/9a, 15, 16/16a, and 38</td>
<td>Lag storage additions (LSAs) #1 and #2 hardstands; old and new hardstand storage areas; Lag storage building; Lag storage extension; LSAs #3 and #4; and the drum supercompactor</td>
</tr>
<tr>
<td>SSWMU #7 – Chemical Process Cell-Waste Storage Area</td>
<td>14</td>
<td>Chemical Process Cell-Waste Storage Area</td>
</tr>
<tr>
<td>SSWMU #8 – CDDL</td>
<td>1</td>
<td>CDDL</td>
</tr>
<tr>
<td>SSWMU #9 – NDA</td>
<td>2, 11/11a, 23, 31, and 39</td>
<td>NDA and NDA trench soil container area; kerosene tanks; NDA container storage area; and interceptor trench project and staging area for NDA</td>
</tr>
<tr>
<td>SSWMU #10 – Integrated Radwaste Treatment System</td>
<td>21</td>
<td>Integrated radwaste treatment system drum cell</td>
</tr>
<tr>
<td>SSWMU #11 – SDA</td>
<td>NA</td>
<td>The SDA is a closed radioactive waste landfill that is contiguous with the Project premises and is owned and managed by NYSERDA. For more information, see their website at www.nyserda.ny.gov.</td>
</tr>
<tr>
<td>SSWMU #12 – Hazardous Waste Storage Lockers (HWSLS)</td>
<td>24</td>
<td>HWSLs 1 to 4</td>
</tr>
</tbody>
</table>

Note: The WVDP RCRA SWMUs and SSWMUs are discussed under the section titled “RCRA §3008(h) Administrative Order on Consent.”
TABLE ECS-4 (concluded)
WVDP RCRA SSWMUs and Constituent SWMUs
Identified in the RFI under the RCRA 3008(h) Order on Consent

<table>
<thead>
<tr>
<th>Individual SWMUs</th>
<th>WVDP RCRA SWMUs Not Associated with a SSWMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Inactive scrap metal landfill adjacent to bulk storage warehouse (NYSERDA SWMU)</td>
<td>25 Inactive scrap metal landfill adjacent to bulk storage warehouse (NYSERDA SWMU)</td>
</tr>
<tr>
<td>26 Subcontractor maintenance area</td>
<td>26 Subcontractor maintenance area</td>
</tr>
<tr>
<td>27 Fire brigade training area</td>
<td>27 Fire brigade training area</td>
</tr>
<tr>
<td>28 VIT hardstand</td>
<td>28 VIT hardstand</td>
</tr>
<tr>
<td>29 Industrial waste storage area</td>
<td>29 Industrial waste storage area</td>
</tr>
<tr>
<td>30 Cold hardstand area near the CDDL</td>
<td>30 Cold hardstand area near the CDDL</td>
</tr>
<tr>
<td>32 Old sewage treatment facility</td>
<td>32 Old sewage treatment facility</td>
</tr>
<tr>
<td>33 Existing sewage treatment facility</td>
<td>33 Existing sewage treatment facility</td>
</tr>
<tr>
<td>34 Temporary storage locations for well purge water</td>
<td>34 Temporary storage locations for well purge water</td>
</tr>
<tr>
<td>35 Construction and demolition area</td>
<td>35 Construction and demolition area</td>
</tr>
<tr>
<td>36 Old school house septic system</td>
<td>36 Old school house septic system</td>
</tr>
<tr>
<td>37 CSRF</td>
<td>37 CSRF</td>
</tr>
<tr>
<td>40 Satellite accumulation areas and 90-day storage areas</td>
<td>40 Satellite accumulation areas and 90-day storage areas</td>
</tr>
<tr>
<td>41 Designated roadways</td>
<td>41 Designated roadways</td>
</tr>
<tr>
<td>42 Product storage area</td>
<td>42 Product storage area</td>
</tr>
<tr>
<td>43 Warehouse extension staging area</td>
<td>43 Warehouse extension staging area</td>
</tr>
<tr>
<td>44 Fuel receiving and storage area; high-integrity container and SUREPAK™ staging area</td>
<td>44 Fuel receiving and storage area; high-integrity container and SUREPAK™ staging area</td>
</tr>
<tr>
<td>45 Breach in laundry wastewater line</td>
<td>45 Breach in laundry wastewater line</td>
</tr>
<tr>
<td>46 VIT vault and empty container hardstand</td>
<td>46 VIT vault and empty container hardstand</td>
</tr>
<tr>
<td>47 RHWF</td>
<td>47 RHWF</td>
</tr>
</tbody>
</table>

Note: The WVDP RCRA SWMUs and SSWMUs are discussed under the section titled “RCRA §3008(h) Administrative Order on Consent.”
Summary of Waste Management Activities at the WVDP During 2014

<table>
<thead>
<tr>
<th>Waste Description/Facility</th>
<th>Type of Project Generating Waste</th>
<th>Quantity in 2014</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLW</td>
<td>Includes all sources of generation</td>
<td>37,593 cubic feet (ft³) (1,065 cubic meters [m³])</td>
<td>Waste packaged and shipped.</td>
</tr>
<tr>
<td>TRU waste</td>
<td>TRU waste processing</td>
<td>0 ft³ (0 m³)</td>
<td>TRU waste processing may resume in CY 2015.</td>
</tr>
<tr>
<td>Hazardous and Mixed LLW</td>
<td>Waste management according to the STP</td>
<td>3,642 lbs (1.82 tons)</td>
<td>Waste packaged and shipped during CY 2014.</td>
</tr>
<tr>
<td>Radiological wastewater from the LLWTF (Low Level Waste Treatment Building, LLW2 [WNSP001])</td>
<td>NYSDEC regulates point-source liquid effluent discharges of treated process wastewater through the SPDES permit for the WVDP.</td>
<td>Approximately 5,800,000 gal (21,800,000 L)</td>
<td>During CY 2014, four batches of wastewater were processed through the LLW2. This included groundwater pumped from the NDA interceptor trench.</td>
</tr>
<tr>
<td>Industrial wastewaters (WNSP007)</td>
<td>Wastewater processing, discharge</td>
<td>Approximately 1,520,000 gal (5,750,000 L)</td>
<td>The WWTF treated industrial wastewater that was discharged through outfall WNSP007 in CY 2014.</td>
</tr>
<tr>
<td>Sanitary waste</td>
<td>Waste shipping and disposal</td>
<td>Approximately 1,730,000 gal (6,550,000 L)</td>
<td>Sanitary waste was shipped to the Buffalo Sewer Authority or Gowanda sewage treatment plant for treatment and disposal during CY 2014.</td>
</tr>
<tr>
<td>NDA interceptor trench</td>
<td>Interceptor trench (WNNDATR) and groundwater pre-treatment</td>
<td>Approximately 74,494 gal (281,990 L)</td>
<td>Groundwater was pumped and transferred to the LLW2. No organics or TBP were encountered in CY 2014. No pre-treatment was necessary.</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Asbestos management and abatement</td>
<td>685 linear feet (209 meters) pipe insulation; 631 square feet (ft²) (58.6 square meters [m²]) asbestos-containing roofs, components, and caulks.</td>
<td>Insulation was removed from piping, and roofing components, and caulks were removed in the MPPB during CY 2014.</td>
</tr>
<tr>
<td>Universal waste</td>
<td>Spent bulbs/spent batteries</td>
<td>Bulbs - 597 lbs (0.30 ton) Batteries - 2,688 lbs (1.34 ton)</td>
<td>Waste disposed of as universal waste.</td>
</tr>
</tbody>
</table>

Note: Certain waste totals are tallied by FY while others are tallied by CY.
TABLE ECS-6
WVDP 2014 Air Quality Noncompliance Episodes

<table>
<thead>
<tr>
<th>Permit Type</th>
<th>Facility</th>
<th>Parameter</th>
<th>Date(s) Exceeded</th>
<th>Description/ Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA, NESHAP</td>
<td>All</td>
<td>All</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>NYSDEC Air Permit</td>
<td>All</td>
<td>All</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

TABLE ECS-7
Status of EPCRA (SARA Title III) Reporting at the WVDP For CY 2014

<table>
<thead>
<tr>
<th>EPCRA Section</th>
<th>Description of Reporting</th>
<th>Submission Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPCRA 302–303</td>
<td>Planning Notification</td>
<td>No</td>
</tr>
<tr>
<td>EPCRA 304</td>
<td>Extremely Hazardous Substance Release Notification</td>
<td>No</td>
</tr>
<tr>
<td>EPCRA 311</td>
<td>Material Safety Data Sheet</td>
<td>No</td>
</tr>
<tr>
<td>EPCRA 312</td>
<td>Hazardous Chemical Inventory</td>
<td>Yes</td>
</tr>
<tr>
<td>EPCRA 313</td>
<td>Toxic Chemical Release Inventory Reporting</td>
<td>No</td>
</tr>
</tbody>
</table>

TABLE ECS-8
Reportable Chemicals Above EPCRA 312 (SARA Title III) Threshold Planning Quantities Stored at the WVDP in 2014

<table>
<thead>
<tr>
<th>Chemicals Stored at the WVDP Above the Threshold Planning Quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel fuel/No. 2 Fuel Oil</td>
</tr>
<tr>
<td>Unleaded Gasoline</td>
</tr>
<tr>
<td>Oils - various grades</td>
</tr>
<tr>
<td>Ion-exchange media</td>
</tr>
<tr>
<td>Lead-acid batteries</td>
</tr>
<tr>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
</tr>
</tbody>
</table>

TABLE ECS-9
WVDP SPDES\(^a\) Permit Limit Exceedances in 2014

<table>
<thead>
<tr>
<th>Permit Type</th>
<th>Outfall(s)</th>
<th>Parameter</th>
<th>No. of Permit Exceptions</th>
<th>No. of Samples Taken</th>
<th>No. of Compliant Samples</th>
<th>Percent Compliant Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPDES</td>
<td>All</td>
<td>All</td>
<td>0</td>
<td>1,202</td>
<td>1,202</td>
<td>100%</td>
</tr>
</tbody>
</table>

\(^a\) Radionuclides are not regulated under the site’s SPDES permit. However, special requirements in the permit specify that the concentration of radionuclides in the discharge is subject to requirements of DOE Order 5400.5, (see letter CHBWV to NYSDEC, January 8, 2013).

Note: The WVDP notified NYSDEC that DOE Order 5400.5 was replaced by DOE Order 458.1. The WVDP is currently executing the requirements of DOE Order 458.1, including its referenced DCs.
TABLE ECS-10

WVDP Migratory Bird Nest Depredation Activities in Fiscal Year 2014

<table>
<thead>
<tr>
<th>Permit/License Type</th>
<th>Parameter</th>
<th>Permit Limit</th>
<th>2014 Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Fish and Wildlife - Bird Depredation Permit</td>
<td>Removal of Active Barn Swallow Nests</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife - Bird Depredation Permit</td>
<td>Removal of Active American Robin Nests</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife - Bird Depredation Permit</td>
<td>Removal of Active Eastern Phoebe Nests</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife - Bird Depredation Permit</td>
<td>Removal of Active Common Grackle Nests</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife - Bird Depredation Permit</td>
<td>Removal of Inactive Migratory Bird Nests</td>
<td>Not limited</td>
<td>0</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife - Registration</td>
<td>Oiling of Canada Goose Eggs</td>
<td>NA</td>
<td>0</td>
</tr>
</tbody>
</table>

NA - Not applicable
This page intentionally left blank
Environmental Management System (EMS)

The DOE is committed to implementing sound stewardship practices to protect the air, water, land, and other natural and cultural resources that may be affected by activities at the WVDP. The EMS is a program that the WVDP utilizes to effectively manage the impacts its operations have on the environment, and to systematically improve its environmental stewardship practices. The WVDP EMS was designed to meet the ISO 14001 (Environmental Management Standard) as required by DOE order 436.1, “Departmental Sustainability,” which describes the requirements and responsibilities for implementing the EMS program. CHBWV, the current prime contractor at the WVDP, received a Certificate of Registration for the WVDP EMS under ISO 14001:2004 on July 31, 2012.

The WVDP EMS is also designed to ensure that DOE-WVDP carries out its mission in a sustainable manner. DOE Order 436.1 requires development and implementation of an annual Site Sustainability Plan (SSP) that identifies the site’s contributions toward meeting DOE sustainability goals for national energy security, global environmental challenges, pollution prevention, waste minimization, energy reduction, and water conservation. Sustainability is an essential element of the facility disposition mission at the WVDP where DOE is returning decommissioned areas to natural sustainable landscapes. CHBWV incorporates the DOE sustainability goals into its EMS in all work planning and execution via hazard screens, standard operating procedures, work instruction packages, walk downs, pre-job briefs and ongoing evaluations during job execution.

The EMS is a key component of the Integrated Safety Management System (ISMS). The objective of the ISMS is to perform work in a safe and environmentally sound manner. Together the EMS and ISMS provide a management framework for integrating safety, environmental and regulatory requirements into all work practices so that work is accomplished while protecting the health and safety of the public, the site workers, and the environment at all levels.

The ISO 14001 EMS model employs a cycle of:

- policy development,
- planning,
- implementation,
- checking and corrective action, and
- management review

to improve resource efficiency and reduce waste.

ISMS/EMS Integration

The core functions of the EMS shown on the inner circle of the ISMS/EMS integration figure are aligned with the core functions of the ISMS shown in the outer circle: to define work, analyze hazards, develop controls, perform work, and provide feedback. The ultimate goal is to improve performance as the cycle repeats.

Safety is a core value for the work performed at the WVDP. In 2014, CHBWV, the current site contractor, was presented the Voluntary Protection Program (VPP) Star of Excellence Award, the highest level awarded by DOE for safety and health programs. The WVDP has been certified as a DOE VPP Star site since 1999. Safety performance during 2014 was outstanding, with CHBWV and its subcontractors achieving 1.2 million consecutive work
hours without a lost time work injury or illness, attaining one of the highest safety rankings in the DOE complex. Focus on safety not only protects the worker but also promotes protection of the environment by reducing the occurrence of accidents. Safe behaviors at the WVDP are continuously reinforced through safety initiatives such as the Safety Conscious Work Environment and Beyond Target Zero programs.

Policy and Commitment

The CHBWV Environmental Policy for the WVDP integrates environmental requirements and pollution prevention into project planning and execution and directs that sound stewardship practices are implemented. The CHBWV policy requires that site personnel will:

- comply with all environmental laws and regulations,
- minimize waste generation,
- protect and conserve natural resources, and
- quantify and track their environmental objectives with input from all stakeholders, employees and subcontractors.

The official site Environmental Policy is posted in many meeting areas across the site, and it is available on the CHBWV website (http://www.chbwv.com/graphics/CHBWV_Environmental_Policy.pdf). Managers are expected to take prompt action to address environmental concerns and to have zero tolerance for noncompliance with the policy.

Program Planning

The EMS directs that the first step in planning work must involve identifying which activities must meet specific regulatory requirements, which activities may have the potential for significant environmental impacts, and which activities can be performed in a manner that would contribute to DOE sustainability goals.

Regulatory Compliance. Involvement of regulatory support personnel in work planning enables assessment of the applicability of environmental laws and regulations prior to initiation of work to ensure appropriate permits and operating practices are in place. Compliance is also maintained by routine environmental monitoring of air, water, groundwater, and ambient radiation dose. Required regulatory reports that analyze these data are generated on a regular basis.

Potential Environmental Impacts. Activities that have regulatory implications or those that have the potential for significant environmental impacts are identified as “significant aspects.” Per the ISO 14001 standard, an environmental aspect is defined as “an element of an organization’s activities, products, or services that can interact with the environment.”

The potential significant environmental aspects of site activities planned for 2014 at the WVDP were systematically graded with respect to their likelihood of occurring, the potential magnitude of the impact, the potential regulatory requirements or ramifications and the anticipated level of community concern. The purpose of grading significant environmental aspects was to identify the most important potential aspects of the planned work scope for the year. The most significant environmental aspects from the 2014 ranking are summarized in Table 1-1.

Some of the site activities that have been identified as having potential significant environmental impacts are:

- Radiological Air Emissions
- Asbestos Management
- Liquids with Toxics (Metals, Organics) and Radiological Contamination
- Waste Generation
- Management of Low-Level Waste
- Energy Use
- Methods for Saving Energy
- Discharge to Water
- Liquids with Toxics (Metals, Organics) and Radiological Contamination
- Nuclear Operations and Storage
- Accidental Release
- Vulnerability and Potential for Accidental Release (such as HEPA filter failure)
- HLW Project
- Air Emissions
- Radiological Emissions from HLW Canister Decontamination, Transport or Storage

Note: The environmental aspects for the Waste Operations functions were below the cut-off rank for “significant aspects” in 2014.
include:

- decontamination and demolition of buildings by the Facilities Disposition group,
- managing liquid waste and potential accidental releases by the Nuclear Operations and Storage group, and
- decontamination of the HLW canisters, construction of the HLW casks to shield the canisters, and relocation of the canisters from inside the MPPB to the storage pad on the south plateau by the HLW Relocation Projects group.

The most prominent facility requiring demolition is the MPPB which is a 40,000 square feet, five-story, steel-reinforced, concrete structure that housed the mechanical and chemical process equipment used to separate uranium and plutonium from spent nuclear fuel. Significant facility deactivation and equipment removal took place inside the MPPB in 2014. The MPPB contains asbestos insulated piping, and radiologically contaminated tanks, pipes and surfaces. The MPPB facility is comprised of 55 rooms, many with residual high radiological dose rates. For each facility or structure that is considered for demolition, the base environmental aspects are identified and addressed during work planning with the assistance of hazard control specialists. Before a building may be demolished, a “Demolition Readiness Checklist” that captures the relevant environmental aspects must be completed.

Activities which could have potential accidental releases of air and water are continuously evaluated under the EMS. The EMS is used to ensure appropriate operational procedures and environmental monitoring programs are in place to minimize or eliminate any potential impacts to the environment from this project.

EMS Implementation

Objectives. EMS objectives and targets are established in order to quantitatively evaluate progress towards pollution prevention, reduction of environmental hazards, reduction of waste disposal costs, improvements in environmentally safe operations, and overall protection of the public and environment. Objectives and targets are re-aligned annually to support upcoming operations and work activities. The WVDP objectives and targets take into consideration the site mission to demolish buildings and infrastructure. Energy use, water consumption, and greenhouse-gas (GHG) emissions will decrease as decommissioning activities progress and the site footprint is reduced.

In addition to limiting air and water releases to the environment, the 2014 EMS targets included the following:

- reduction in energy use,
- reduction in the chemicals needed for water treatment,
- reduction in procurement of aerosol containers, and
- completion of the planning for a scrap metal recycling program (for startup in January 2015).

All of these targets were achieved in 2014.

DOE Sustainability Goals. Each year, the WVDP also updates their sustainability goals to correlate with the planned work scope and to contribute towards nationwide DOE sustainability goals such as: GHG reduction, energy savings, water use efficiency, vehicle fleet management, pollution prevention and waste reduction, sustainable acquisition, and electronic stewardship. Achievements in 2014 towards these goals are discussed in the EMS Results section of this chapter.

EMS Incorporation into WVDP Milestones. The WVDP focused on two major activities in 2014:

- HLW canister relocation, including testing of remote decontamination of the canisters inside the MPPB and reinforcement of the MPPB floors and haul road to support the heavy equipment required to transport the canisters, and
- decontamination of the MPPB and VIT facility rooms or cells in which radioactive waste was managed in preparation for demolition.

The comprehensive EMS management approach employed during deactivation and demolition of the 01-14 building, serves as a model for other radiological demolition activities including planning for demolition of the VIT facility and MPPB. The 01-14 building was a 60-foot tall steel-reinforced concrete and concrete masonry block structure that was used for a number of radioactive processes. Planning for the building’s demolition began months before the physical work and included sustainability as one of many aspects of the work scope. The key steps in the deactivation and demolition processes that address sustainability goals are shown in Table 1-2.

CHBWV has removed nine buildings/structures to date. Several other buildings including the VIT facility and the...
MPPB are in various stages of deactivation, decontamination, or demolition. As buildings and structures are removed, the areas they occupied are generally graded and seeded to restore them to natural sustainable landscapes.

A major challenge at the WVDP is protecting the environment from highly radioactive fission products, release of asbestos fibers, and other hazardous materials located within the worn infrastructure of the MPPB and other facilities. The often conflicting goals of progressing facility demolition activities while supporting ongoing site operations are balanced at the WVDP on a daily basis. Meeting those goals is complicated by site and facility infrastructure that has reached the end of its design life.

Training. The “WVDP Worker Safety and Health Plan” describes required safety training and explains how the WVDP complies with 10 CFR 851, the Federal “Worker Safety and Health Program” which has been in effect since 2007. The safety plan is reviewed annually and updated as site conditions change. Additional specialized safety training is performed by employees based on their work requirements. For example, employees who enter highly contaminated areas take RadWorker II training, and those who may work in a confined space take confined space training. All employees participate in human performance/behavior-based safety training to help reduce errors and prevent accidents. Self-assessment activities are also stressed as a mechanism for evaluating, improving, and maintaining worker safety.

<table>
<thead>
<tr>
<th>Sustainability Goal</th>
<th>Deactivation/Demolition Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG Reductions</td>
<td>Isolate utilities.</td>
</tr>
<tr>
<td>Waste Reduction</td>
<td>Remove radiologically clean materials and equipment for reuse or for recycling.</td>
</tr>
<tr>
<td>Pollution Prevention</td>
<td>Remove and dispose radioactive and hazardous materials.</td>
</tr>
<tr>
<td>Waste Management</td>
<td>Identify demolition boundaries to separate clean debris from contaminated debris. Remove clean materials first.</td>
</tr>
<tr>
<td>Reduce Utility Water Use</td>
<td>Control spray volume and collect water during dust suppression.</td>
</tr>
</tbody>
</table>

TABLE 1-2
Sustainability Goals Incorporated in the Processes of Deactivation and Demolition

Demolition of the Environmental Lab

Restoration of Environmental Lab area
Any person working at the WVDP who has a personal photo badge allowing unescorted access to administrative areas of the site receives general employee training (GET) that covers health and safety, emergency response, and environmental compliance issues. All visitors to the WVDP receive a site-specific briefing on safety and emergency procedures.

EMS Progress Tracking. Overall success towards reaching the objectives of the EMS program is fundamentally realized by the excellent safety record achieved at the WVDP in 2014 and by sustained compliance with all environmental laws and regulations. RCRA compliance, SPDES, groundwater and air monitoring reports are routinely submitted to DOE, NYSDEC and the EPA monthly, quarterly and annually.

EMS Results

EMS Performance Metrics for 2014 EMS Scorecard. The EMS Annual Report, submitted to the Federal Facilities Environmental Stewardship and Compliance Assistance Center (www.fedcenter.gov), establishes EMS performance metrics in several categories on which each site is scored. Based on the current status of the EMS, the WVDP scored “green” on the scorecard indicating the site has a compliant and robust environmental management system. Site-specific information with respect to some of these categories is provided in the following sections:

1. Energy Use and Greenhouse Gas Emissions (GHG)

Several initiatives were taken at the WVDP in 2014 to reduce overall energy use. One of the largest changes in energy use has been the conversion of much of the site’s heating to local electric heaters. This conversion was done to allow for the shutdown of the site’s two 20.2 million Btu/hour natural gas fueled boilers. Although this resulted in an increase in electrical use for heating, this increase was offset by a reduction in natural gas usage.

Additional energy conservation actions undertaken since the steam heating system was deactivated include insulation of the 450,000 gallon water storage tank, and the use of small, energy-efficient, natural gas water heaters to prevent the tank from freezing.

The conversion of the water supply system from surface water to groundwater also resulted in a reduction of site electricity usage. Two groundwater wells were installed on site in late 2014 to replace the WVDP’s surface water supply from the lakes south of the site. This project lowered energy costs for supply well pumping by 60%, (about $11,000 per year), by reducing the need to operate the large pumps that transported water to the site from the lakes located over one mile away.

Reduction of the environmental footprint of the project by decontamination and demolition of site facilities results in decreasing energy use and subsequent GHG emissions as shown by the reduction in CO2-equivalent tons since the 2008 baseline in the graph below.

FIGURE 1-1

Energy Use

FIGURE 1-2

GHG Emissions
Across the site, compact fluorescent lamps (CFLs) are being replaced with light-emitting diode (LED) bulbs. Over 500 CFLs were replaced in 2014. The used CFLs were placed into the property excess system and sold for reuse.

Equipping buildings with new renewable energy sources such as solar heating is not practical for the WVDP because, with the exception of the RVU enclosures, no new facilities are being constructed. However, an energy reduction feasibility study was performed to evaluate the use of solar power at the NDA surface water sampling station. The outcome of the study indicated solar power would be a cost effective enhancement for the samplers. Construction is scheduled to be completed within the next two years.

2. Water Use

In late 2014, CHBWV installed two groundwater wells on site to supply drinking and process water to reduce the maintenance requirements associated with treatment of a surface water supply source from the lakes. The clarifier is no longer needed with this alternative water supply. Discontinued use of the clarifier is one step towards deactivation and demolition of the utility room. Overall less water is anticipated to be needed at the site as facilities are demolished. However, during the demolition itself, water will temporarily be used at a higher rate due to the spray-water needed for dust suppression during open-air demolition.

3. Vehicle Fleet Fuel Use

Gasoline usage has been reduced by 53.6% from the FY 2005 baseline. There has also been a reduction in the site’s motor vehicle fleet size by 30% since the start of the Facilities Disposition contract in 2011. The use of electric vehicles on the site has increased by obtaining eight electric carts from the government surplus list.

4. Sustainable Acquisition

In support of DOE sustainability goals, the WVDP continues to purchase products that save energy, conserve water, and reduce health and environmental impacts. Routine activities or projects which require the purchase of chemicals, equipment, and supplies, prompt evaluations for potential purchases of green products. Warehouse stock items are selected through site procedures with objectives to meet recycled and/or bio-based content preferences, such as copy paper with at least 30% postconsumer fiber.

In an effort to reduce the procurement of toxic or hazardous materials, all proposed chemical purchases are evaluated to ensure they meet the requirement for utilization of non-toxic or less toxic alternative chemicals. Surface cleaners are used extensively at the site for decontamination. In 2014 the site purchased alternative non-aerosol, bio-based surface cleaners, and is evaluating their effectiveness. Substituting these alternative cleaners for the previously used aerosol cleaners will help reduce the generation of hazardous wastes at the WVDP. Flocculants (chemicals used to remove particles from suspension) are no longer purchased. Conversion of the water supply system from a surface water source to a groundwater source eliminated the need for approximately 6,000 pounds of flocculation chemicals per year that were used in the clarifier for water purification.
Sustainable remediation practices were employed for the erosion repairs to the flood damaged spillway on Lake 1. A flooding event in 2009 resulted in considerable erosion of the spillway and subsequent sedimentation into Buttermilk Creek as shown by the photo above.

The spillway was repaired in 2014 using an “Enkamat”, a non-toxic, chemically neutral filament mesh that together with “Flex Terra” hydroseeding, (using grass as a construction material), produced a permanent vegetated surface that protects against erosion on the steep impermeable slope of Lake 1. This system was used in lieu of a concrete-based structure and will provide a natural, highly-weather-resistant and durable surface that will prevent erosion even during periods of cascading flow. Sedimentation from the damaged areas into Buttermilk Creek was greatly reduced by this robust re-engineered area.

5. Pollution Prevention and Waste Reduction

Waste minimization and recycling of non-hazardous, non-radioactive solid waste is maximized through EMS involvement in project planning. The WVDP’s “Waste Minimization and Pollution Prevention Awareness Plan” establishes the strategic framework for integrating waste minimization and pollution prevention into waste generating and reduction activities, and encourages procuring recycled products, reusing existing products, and using methods that conserve energy. The comprehensive program drives continual effort to prevent or minimize pollution, with the overall objective of reducing health and safety risks, and protecting the environment.

Materials have been routinely recycled, reused, or donated at the WVDP for many years. In 2014, the scrap metal recycling program was re-established with startup in January 2015. A total of approximately 91 tons of material was diverted from landfills in 2014. The quantities of each type of material recycled/reused or donated are summarized in Table 1-3.

<table>
<thead>
<tr>
<th>Material</th>
<th>2014 Quantity (tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed paper and corrugated cardboard</td>
<td>13.9</td>
</tr>
<tr>
<td>No longer needed supplies or equipment (negotiated sales)</td>
<td>45.7</td>
</tr>
<tr>
<td>Transfers to other DOE sites</td>
<td>5.3</td>
</tr>
<tr>
<td>Electronics for reuse or recycling</td>
<td>11.0</td>
</tr>
<tr>
<td>Toner cartridges</td>
<td>1.5</td>
</tr>
<tr>
<td>Wood</td>
<td>5.7</td>
</tr>
<tr>
<td>Fluorescent bulbs</td>
<td>0.3</td>
</tr>
<tr>
<td>Batteries</td>
<td>1.3</td>
</tr>
<tr>
<td>Donations</td>
<td>5.7</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>91.0</td>
</tr>
</tbody>
</table>
6. Electronic Stewardship

The site exceeded its FY 2014 electronic stewardship goal to purchase at least 95% of eligible computer and electronic equipment that have been certified through the Electronic Product Environmental Assessment Tool (EPEAT) program. EPEAT is a global environmental rating system that helps purchasers identify high-performance, environmentally preferable computers and other electronics. Electronic equipment that is no longer needed is either donated through the government surplus “Computers for Learning” program or sent out for recycling through approved facilities.

Checking and Feedback

Evaluation of Compliance and Regulatory Requirements. Throughout CY 2014, comprehensive evaluations, reviews, audits, assessments, and inspections were performed to evaluate the implementation of EMS elements at the WVDP and to provide objective and independent review of site functions. Many of these evaluations are performed through the QA program to confirm functional compliance with site procedures, applicable local, state, and federal environmental regulations, and applicable DOE Directives. The WVDP’s QA program also provides for and documents consistency, precision, and accuracy in collecting and analyzing environmental samples and in interpreting and reporting environmental monitoring data. The integrated QA program incorporates the requirements from the consensus standard “Quality Assurance Program Requirements for Nuclear Facility Applications” (American Society of Mechanical Engineers [ASME] Nuclear Quality Assurance Level 1 [NQA-1-2008/2009a]).

Results from the 2014 assessments indicate that an effective EMS has been implemented at the WVDP. The 2014 assessments, audits and inspections identified a few areas for improvement. Some of the recommendations for improvement in 2014 included raising the height of two tank secondary containment berms and submittal of the annual management reviews of the EMS into the site’s record-keeping system.

Environmental Quality Assurance (QA) / Quality Control (QC) Program. All environmental laboratories are required to participate in applicable crosscheck programs. Subcontract laboratories at the WVDP are required to have at least 80% of reported results falling within control limits. Crosscheck samples (used to test the accuracy of environmental measurements) contain a constituent of interest at a concentration known to the agency conducting the crosscheck, but unknown to the participating laboratory. Crosscheck results that fall outside of control limits are addressed by formal corrective actions to determine any conditions that could adversely affect sample data and to ensure that actual sample results are reliable.

After demolition of the building which previously housed the environmental laboratory, CHBWV Environmental Services (ES) maintained its on-site environmental laboratory capabilities to perform limited radiological analysis of air and water samples. These include quick turnaround-time water sample analysis (for gross alpha, gross beta, strontium-90 and gamma emitters) in support of site operations, and analysis of air samples (for gross alpha, gross beta, tritium, select gamma-emitters, and iodine-129) in support of the environmental monitoring program. Analyses requiring NYSDOH Environmental Laboratory Accreditation Program (ELAP) certification are performed by off-site subcontract laboratories. On-site ELAP certification was relinquished in 2012.

In 2014, the WVDP and its subcontract laboratories participated in the DOE Radiological Environmental Sciences Laboratory Mixed Analyte Performance Evaluation Program (MAPEP), which provides performance evaluation samples for both radiological and nonradiological constituents, and in the EPA Discharge Monitoring Report Quality Assurance (DMR-QA) study required of major and select minor SPDES permit holders. Results of these studies are summarized in Appendix G and in Table 1-4. As presented, 98.4% of the crosschecks performed in 2014 were acceptable.

TABLE 1-4
Summary of Crosschecks Completed in 2014

<table>
<thead>
<tr>
<th>Type</th>
<th>Number Reported</th>
<th>Number Within Acceptance Limits</th>
<th>Percent Within Quality Control Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiological</td>
<td>88</td>
<td>86</td>
<td>97.7%</td>
</tr>
<tr>
<td>Non-radiological</td>
<td>230</td>
<td>227</td>
<td>98.7%</td>
</tr>
<tr>
<td>All types</td>
<td>318</td>
<td>313</td>
<td>98.4%</td>
</tr>
</tbody>
</table>
Lessons Learned: Identification of unlabeled secondary containers resulted in the creation of a Chemical Management Team to improve on-site chemical management, with representatives from all projects that use and store chemicals. The purpose of the team is to improve safe work practices through enhancements to the management, inventory control, and labeling of chemicals. The team established procedures for container labeling and chemical inventory inspections in 2014 and developed secondary labels using the Globally Harmonized System of Classification and Labeling of Chemicals.

Management Review. An internal EMS senior management briefing was conducted at an Executive Safety Review Board (ESRB) meeting on September 24, 2014 to review the site’s environmental performance to ensure the continuing suitability, adequacy and effectiveness of the EMS. No findings were identified during this review.

An external ISO 14001 EMS Surveillance Audit was conducted during May 6 to 8, 2014. The external audit was conducted to determine if the CHBWV EMS continued to be fully functional and continued to meet the requirements of ISO 14001. Overall, the EMS was found to be fully implemented, meeting the ISO 14001 requirements.

Summary

The benefit of the WVDP EMS program to DOE’s mission at the WVDP in 2014 includes an outstanding worker safety record, compliance with all major environmental regulations, reduction of energy and supply water expenses, reduced waste inventory through reuse/recycling and shipping, safe removal of asbestos, and safe decontamination of highly radiologically contaminated areas.
This page intentionally left blank
Monitoring Program

The goal of the WVDP environmental monitoring program is to ensure that the public’s health and safety and the environment continue to be protected with respect to releases from site activities. To achieve this goal, possible exposure pathways are monitored.

The monitoring program primarily focuses on surface water, air, and groundwater pathways, as these are the principal means by which potential contaminants are transported off site. Water, air, groundwater, and other environmental media samples are collected and measured for radiological and chemical constituents. A description of and schedule for the sampling program at each location and discussion of the environmental monitoring program drivers and rationale, as well as maps showing the 2014 sampling locations, are presented in Appendix A. Groundwater monitoring data are discussed in Chapter 4. Monitoring data for all other media are discussed in this chapter. In accordance with DOE Order 458.1 (Change 3), the monitoring program includes both effluent monitoring and environmental surveillance.

Effluent Monitoring. Liquid effluents and air emissions are monitored by collecting samples at locations on site where radioactivity or chemical constituents are (or might be) released. Release points include discharge outfalls, storm water outfalls, site drainage points, and air ventilation stacks. At some locations, direct measurements (e.g., direct radiation or flow rates) are also collected. The WVDP maintains required permits and/or certificates from regulatory agencies applicable to releases to air and water, as listed in the Environmental Compliance Summary (ECS), Table ECS-3.

Environmental Surveillance. Surface water, drinking water, air, sediment, soil, venison, fish, milk, and food crops are collected at locations where the highest concentrations of transported contaminants might be expected. Samples are also collected at remote locations to provide background data for comparison with data from on-site and near-site samples. This includes samples collected from the ambient air monitors surrounding the WNYNSC. Direct radiation is monitored on site, at the site perimeter, and at a remote background location.

Data Evaluation. Environmental sampling results are assessed to determine whether the constituents of interest are present and, if so, their concentrations. Data from each sampling location are compared with applicable regulatory or guidance limits. The current guidance levels for evaluating radiological constituents in air and water are defined as Derived Concentration Standards (DCSs) and are dictated in DOE-STD-1196-2011. DCSs replace the DOE derived concentration guides (DCGs) found in superseded DOE Order 5400.5. These DCSs are presented in Table UI-4 in the “Useful Information” section of this report, and are used throughout this ASER as comparative standards. Refer to the ECS in this report for further discussion of these guidance levels. Regulatory limits for chemical constituents in discharges to surface water under the SPDES program, and additional water quality and potable water standards are listed in Appendix B-1. DCSs for air are provided on the tables in Appendix C and groundwater standards are shown in Appendix D-1.

Data from near-site locations are compared with background concentrations using standard statistical methods to assess possible site impacts to the environment. Results from each location are also compared to historical data from that location to determine if any trends, such as increasing constituent concentrations, are occurring. If indicated, follow-up actions are evaluated and implemented as warranted.

Waterborne Effluent Monitoring

The Project is drained by several small streams. Franks Creek enters from the south and receives drainage from the south plateau. As it flows northward, Franks Creek is joined by Erdman Brook, which receives effluent from the LLW2 (through the lagoon system) and the WWTF. After leaving the Project at the site security fence, Franks Creek receives drainage from the northeast swamp areas on the north plateau and from Quarry Creek, which receives drainage from the north swamp location WNSW74A. Franks Creek then flows into Buttermilk Creek, which, after flowing northward through the WNYNSC, enters Cattaraugus Creek and flows westward away from the WNYNSC. Cattaraugus Creek ultimately drains into Lake Erie, to the northwest. (See Figures A-2 and A-5.)
Waterborne Radiological Releases. The primary sources of radionuclide releases from the site to surface waters occur at two locations, the lagoon 3 weir at outfall 001 (WNSP001 shown on Figure A-2) and natural drainage from the northeast swamp (monitoring point WNSWAMP shown on Figure A-2). Liquid releases from two other locations, the sewage treatment outfall (monitoring point WNSP007) and the north plateau, are also evaluated each year. However, radiological releases to downstream surface water from these points are minor and are not included in this discussion. (Contributions to dose from these minor sources are addressed in Chapter 3, Dose Assessment.)

Discharge through the lagoon 3 weir at SPDES outfall WNSP001 into Erman Brook is the primary controlled point source of liquid release from the Project. Four batch releases totaling about 5.8 million gal (21.8 million L) were discharged from WNSP001 in 2014. Natural drainage from the WNSWAMP location in CY 2014 was estimated to be approximately 16.2 million gal (61.1 million L). Flow weighted estimates of curies released from these two sources in 2014 and average radionuclide concentrations are summarized in Tables 2-1 and 2-2.

Concentrations from the WNSP001 outfall and WNSWAMP effluents are reported together with DCSs for comparison purposes rather than regulatory compliance.

TABLE 2-1

Total Radioactivity Discharged at Lagoon 3 (WNSP001) in 2014 and Comparison of Discharge Concentrations with DOE DCSs

<table>
<thead>
<tr>
<th>Isotope (a)</th>
<th>Discharge Activity (b) ((\text{Ci}))</th>
<th>Discharge Activity (b) ((\text{Becquerels}))</th>
<th>Average Concentration ((\mu\text{Ci}/\text{mL}))</th>
<th>DCS (d) ((\mu\text{Ci}/\text{mL}))</th>
<th>Ratio of Average Concentration to DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>5.43±0.55E-04</td>
<td>2.01±0.20E+07</td>
<td>2.49±0.25E-08</td>
<td>NA(^e)</td>
<td>NA(^f)</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>1.24±0.01E-02</td>
<td>4.57±0.04E+08</td>
<td>5.68±0.05E-07</td>
<td>NA(^e)</td>
<td>NA(^f)</td>
</tr>
<tr>
<td>H-3</td>
<td>1.53±0.15E-02</td>
<td>5.65±0.56E+08</td>
<td>7.01±0.69E-07</td>
<td>1.9E-03</td>
<td>0.0004</td>
</tr>
<tr>
<td>C-14</td>
<td>0.93±2.95E-04</td>
<td>0.34±1.09E+07</td>
<td>0.43±1.36E-08</td>
<td>6.2E-05</td>
<td><0.0002</td>
</tr>
<tr>
<td>K-40</td>
<td>0.85±3.64E-04</td>
<td>0.32±1.35E+07</td>
<td>0.39±1.67E-08</td>
<td>NA(^f)</td>
<td>NA(^f)</td>
</tr>
<tr>
<td>Co-60</td>
<td>0.62±2.98E-05</td>
<td>0.23±1.10E+06</td>
<td>0.28±1.37E-09</td>
<td>7.2E-06</td>
<td><0.0002</td>
</tr>
<tr>
<td>Sr-90</td>
<td>4.86±0.06E-03</td>
<td>1.80±0.02E+08</td>
<td>2.23±0.03E-07</td>
<td>1.1E-06</td>
<td>0.2030</td>
</tr>
<tr>
<td>Tc-99</td>
<td>3.05±0.28E-04</td>
<td>1.13±0.10E+07</td>
<td>1.40±0.13E-08</td>
<td>4.4E-05</td>
<td>0.0003</td>
</tr>
<tr>
<td>I-129</td>
<td>4.02±1.81E-05</td>
<td>1.49±0.67E+06</td>
<td>1.85±0.83E-09</td>
<td>3.3E-07</td>
<td>0.0056</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.74±1.00E-03</td>
<td>6.45±0.38E+07</td>
<td>8.00±0.47E-08</td>
<td>3.0E-06</td>
<td>0.0267</td>
</tr>
<tr>
<td>U-232(^g)</td>
<td>1.44±0.06E-04</td>
<td>5.33±0.24E+06</td>
<td>6.62±0.30E-09</td>
<td>9.8E-08</td>
<td>0.0675</td>
</tr>
<tr>
<td>U-233/234(^g)</td>
<td>1.09±0.06E-04</td>
<td>4.02±0.22E+06</td>
<td>5.00±0.27E-09</td>
<td>6.6E-07(^h)</td>
<td>0.0076</td>
</tr>
<tr>
<td>U-235/236(^g)</td>
<td>5.14±1.30E-06</td>
<td>1.90±0.48E+05</td>
<td>2.36±0.60E-10</td>
<td>7.2E-07</td>
<td>0.0003</td>
</tr>
<tr>
<td>U-238(^g)</td>
<td>8.75±0.54E-05</td>
<td>3.24±0.20E+06</td>
<td>4.02±0.25E-09</td>
<td>7.5E-07</td>
<td>0.0054</td>
</tr>
<tr>
<td>Pu-233</td>
<td>3.34±1.11E-06</td>
<td>1.23±0.41E+05</td>
<td>1.53±0.51E-10</td>
<td>1.5E-07</td>
<td>0.0010</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>3.51±1.18E-06</td>
<td>1.30±0.43E+05</td>
<td>1.61±0.54E-10</td>
<td>1.4E-07</td>
<td>0.0012</td>
</tr>
<tr>
<td>Am-241</td>
<td>5.44±1.28E-06</td>
<td>2.01±0.47E+05</td>
<td>2.50±0.59E-10</td>
<td>1.7E-07</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

Sum of Ratios 0.32

NA - Not applicable.

\(^a\) Half-lives are listed in Table UI-4.

\(^b\) Total volume released: 2.18±10 milliliters (mL) (5.75±06 gal).

\(^c\) 1 curie (Ci) = 3.7E+10 becquerels (Bq); 1Bq = 2.7E-11 Ci; 1 microcurie (µCi) =1E-06 Ci.

\(^d\) DCSs are used as reference values for the application of best available technology per DOE Order 458.1.

\(^e\) DCSs do not exist for indicator parameters gross alpha and gross beta.

\(^f\) The DCS is not applied to potassium-40 (K-40) activity because of its natural origin.

\(^g\) Total uranium (g) = 2.50±0.03E±02; Average uranium (µg/mL) = 1.15±0.02E-02.

\(^h\) The DCS for U-233 is used for this comparison.
DOE-STD-1196-2011 defines DCSs as radionuclide concentrations that, under conditions of continuous exposure for one year by one exposure mode, would result in an effective dose equivalent of 100 mrem (1 millisievert [mSv]). Members of the public do not have access to the WVDP and therefore do not have any potential of direct exposure at outfall WNSP001 and WNSWAMP. (Note that DCSs are not used for dose assessment. Methods for estimating dose from the liquid pathway are discussed in Chapter 3.)

To evaluate each radionuclide released with respect to the DCSs, each annual average radionuclide concentration was divided by its respective DCS and the ratios from all nuclides were summed. As a DOE policy, the sum of the ratios (also called the “sum of fractions”) should not exceed 1.0, or otherwise expressed as the sum of percentages, should not exceed 100%. Tables 2-1 and 2-2 list the sum of ratios for each release point.

The sum of ratios for the release from WNSP001 in 2014 was approximately 0.32, below the 1.0 criterion. The sum of ratios from WNSWAMP was 1.66, above the DOE-STD-1196-2011 criterion. The maximum sum of ratios calculated at WNSWAMP to date was 2.67 in 2009, prior to installation of the PTW.

As in past years, the relatively high sum of ratios at WNSWAMP was almost entirely attributable to strontium-90. Drainage through the WNSWAMP sampling location largely consists of emergent groundwater supplemented by surface water run-off. Elevated gross beta

TABLE 2-2

Total Radioactivity Released at Northeast Swamp (WNSWAMP) in 2014 and Comparison of Discharge Concentrations with DOE DCSs

<table>
<thead>
<tr>
<th>Isotope a</th>
<th>N</th>
<th>Discharge Activity b</th>
<th>Average Concentration c</th>
<th>DCS d</th>
<th>Ratio of Concentration to DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Ci)</td>
<td>(Becquerels) e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>0.84±5.15E-05</td>
<td>0.31±1.91E+06</td>
<td>1.37±8.43E-10</td>
<td>NA f</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>26</td>
<td>2.33±0.01E-01</td>
<td>8.62±0.02E+09</td>
<td>3.81±0.01E-06</td>
<td>NA f</td>
</tr>
<tr>
<td>Tritium</td>
<td>26</td>
<td>3.16±1.75E-03</td>
<td>1.17±0.65E+08</td>
<td>5.17±2.87E-08</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>C-14</td>
<td>2</td>
<td>0.43±1.37E-03</td>
<td>1.58±5.08E+07</td>
<td>0.70±2.25E-08</td>
<td>< 0.0004</td>
</tr>
<tr>
<td>Sr-90</td>
<td>12</td>
<td>1.12±0.01E-01</td>
<td>4.13±0.02E+09</td>
<td>1.82±0.01E-06</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>3.19±4.77E-05</td>
<td>1.18±1.77E+06</td>
<td>5.21±7.81E-10</td>
<td>< 0.0024</td>
</tr>
<tr>
<td>Cs-137</td>
<td>12</td>
<td>1.83±6.84E-05</td>
<td>0.68±2.53E+06</td>
<td>0.30±1.12E-09</td>
<td>3.0E-06</td>
</tr>
<tr>
<td>U-232</td>
<td>2</td>
<td>0.48±2.36E-06</td>
<td>1.77±8.72E+04</td>
<td>0.78±3.86E-11</td>
<td>9.8E-08</td>
</tr>
<tr>
<td>U-235/234</td>
<td>2</td>
<td>4.85±3.37E-06</td>
<td>1.79±1.25E+05</td>
<td>7.93±5.52E-11</td>
<td>6.6E-07 g</td>
</tr>
<tr>
<td>U-236/238</td>
<td>2</td>
<td>4.08±3.20E-06</td>
<td>1.35±1.19E+05</td>
<td>6.67±5.24E-11</td>
<td>7.2E-07</td>
</tr>
<tr>
<td>Pb-210</td>
<td>2</td>
<td>5.94±3.55E-06</td>
<td>2.20±1.31E+05</td>
<td>9.72±5.81E-11</td>
<td>7.5E-07</td>
</tr>
<tr>
<td>Pb-239/240</td>
<td>2</td>
<td>0.10±1.74E-06</td>
<td>0.36±6.44E+04</td>
<td>0.16±2.85E-11</td>
<td>1.5E-07</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>-0.37±1.46E-06</td>
<td>-1.37±5.40E+04</td>
<td>-0.61±2.39E-11</td>
<td>1.7E-07</td>
</tr>
</tbody>
</table>

Sum of Ratios

1.66

Note: the average pH at this location was 7.3 Standard Units (SU).

N - Number of samples.

NA - Not applicable.

a Half-lives are listed in Table UI-4.

b Total estimated volume released: 6.11E+10 mL (1.62+07 gal).

c 1 Ci = 3.7E+10 Bq; 1Bq = 2.7E-11 Ci.

d DCSs are used as reference values for the application of best available technology per DOE Order 458.1.

e DCSs do not exist for indicator parameters gross alpha and gross beta.

f Total Uranium (g) = 2.14±0.05E+01 ; Average Total Uranium (µg/mL) = 3.50±0.09E-04.

g The DCS for Uranium-233 is used for this comparison.
concentrations were first measured at this location in 1993. Subsequent investigations delineated a plume of strontium-90-contaminated groundwater on the north plateau that discharges to the surface water flowing through the WNSWAMP location. In November of 2010, a PTW designed to remove strontium-90 from the groundwater was installed upgradient of the WNSWAMP drainage ditch. A description of the PTW and other remedial measures designed to limit migration of the strontium-90 groundwater plume are discussed in Chapter 4, “Groundwater Protection Program.”

The flow weighted annual average strontium-90 concentrations at WNSWAMP, which first exceeded the strontium-90 DCS (1.1E-06 microcurie per milliliter [µCi/mL]) in 1995, was above the DCS in 2014. The 2014 concentrations at WNSWAMP are very similar to the concentrations in 2013 (see Chapter 4, Figure 4-8). The 2014 annual average was lower than the 10-year average of 2.0E-06 µCi/mL.

Waters with elevated strontium-90 concentrations drain from WNSWAMP into Franks Creek, then into Buttermilk Creek, and ultimately into Cattaraugus Creek. Water samples are collected monthly for strontium-90 analysis from Cattaraugus Creek downstream of the WVDP at the first point of public access (at WFFELBR). (See Table B-5A in Appendix B-5.) Strontium-90 concentrations measured at this location were statistically indistinguishable from background in 2014.

State Pollutant Discharge Elimination System (SPDES) Permit-Required Monitoring. Liquid discharges from the WVDP are regulated for chemical constituents under a SPDES permit, as identified in Table ECS-3. The permit identifies compliance points from which liquid effluents are released to Erdman Brook (Figure A-2), and specifies the sampling and analytical requirements for each. In July 2011, NYSDEC issued a modified SPDES permit for the WVDP. There were no modifications to the SPDES permit in 2014.

The conditions and requirements of the current SPDES permit are summarized in Appendix B-1. The permit identifies 23 outfalls and compliance points with monitoring requirements and discharge limits. The monitored outfalls include:

- outfall 001 (monitoring point WNSP001), discharge from the LLW2 through the lagoon system;
- outfall 007 (monitoring point WNSP007), discharge from the WWTF, which was discontinued in November 2014;
- outfall 116 (pseudo-monitoring point WNSP116, as noted on the permit), a location in Franks Creek that represents the confluence of outfalls WNSP001, WNSP007, and WNSP008 (which was capped in 2001, and was removed from the SPDES permit in 2011), as well as storm water runoff, groundwater seepage, and augmentation water. Samples from upstream sources are used to calculate total dissolved solids (TDS) at this location and to demonstrate compliance with the SPDES permit limit for this parameter;
- outfall 01B (monitoring point WNSP01B), an internal monitoring point for the liquid waste treatment system evaporator effluent, which was historically monitored for flow and total mercury. No effluent has been released from this outfall since 2006; and
- nineteen storm water discharge outfalls that receive flow from other minor sources, such as fire hydrant testing and groundwater seepage, monitored on a rotational basis. Objectives of the SPDES permit requirements for monitoring storm water runoff are to determine the: (1) levels of water quality and specific chemicals in storm water discharges from specified WVDP locations, (2) amount of rainfall, (3) storm event duration, and (4) resulting flow at the outfalls. The 19 WVDP storm water outfalls are grouped into eight representative drainage basins that could potentially be influenced by industrial or construction activity runoff. One representative outfall from each of the eight outfall groups listed in Appendix A must be sampled on a semiannual basis.

The SPDES permit specifies the following conditions for a qualifying storm water event eligible for storm water discharge monitoring:

1. a period of 72 hours between the monitored event and the previous measurable event of 0.1 inches of precipitation;
2. a total rainfall of more than 0.1 inch; and
3. resultant storm discharge at the outfall.

During CY 2014, storm water samples were collected from all eight outfall groups during both semiannual periods.
Appendix B-2 presents 2014 process effluent data with SPDES permit limits provided for comparison. Appendix B-3 presents 2014 storm water runoff monitoring data for outfalls designated in the WVDP SPDES permit.

There were no SPDES effluent limit exceedances and no SPDES noncompliance events during 2014.

Airborne Effluent Monitoring

Radiological Air Emissions. Federal law allows air containing small amounts of radioactivity to be released from plant ventilation stacks during normal operations. The releases must meet dose criteria specified in the NESHAP regulations to ensure that public health and safety and the environment are protected. At the WVDP in 2014, radiological releases have been measured and/or estimated from five permitted emission points (see Table ECS-3), three non-permitted points, and from diffuse sources. As in previous years, the wastewater storage lagoons were one of the primary sources of the diffuse radiological releases to air at the WVDP in 2014. Sampling locations for point source air emissions are shown on Figure A-6 in Appendix A.

Air releases are evaluated and reported to the EPA in the annual NESHAP report. Measured radionuclide concentrations in air are also compared with DCSs (see Appendix C). DCSs for radionuclides of interest at the WVDP are found in Table UI-4 in the “Useful Information” section of this report. When only gross alpha and beta measurements are available in WVDP air sample results, activity is assumed to come from plutonium-239/240 and strontium-90, respectively, because the DCSs for these radionuclides are the most limiting for major WVDP particulate emissions.

Ventilation and Emission Systems. Exhaust from each EPA-permitted ventilation system on the WVDP is continuously filtered and the permanent systems are monitored as air is released to the atmosphere. Because radionuclide concentrations in air emissions from the site are quite low, a large volume of facility air must be sampled to measure the radionuclide quantity released. Emissions are sampled for radioactivity in both particulate (e.g., strontium-90 and plutonium-239/240) and gaseous forms (e.g., tritium and iodine-129). The total release of each radionuclide varies from year to year in response to changing site activities. For instance, releases of iodine-129 dropped sharply after vitrification was completed in 2002. Over the years, the annual dose from WVDP air emissions has remained a small fraction (less than 5.2%) of the NESHAP standard. (See “Dose From Airborne Emissions” in Chapter 3.)

The Main Plant Process Building (MPPB) Ventilation Stack. The primary controlled air emission point at the WVDP is the MPPB ventilation stack, ANSTACK, which vents to the atmosphere at a height of 208 ft (63.4 m). This stack has historically released ventilation exhaust from several MPPB facilities, including the LWTS, the analytical laboratories, and off-gas from the former VIT system. In 2014, the MPPB stack continued to release ventilation exhaust from spaces within the MPPB. Emissions from the MPPB stack are an order of magnitude lower than they were during VIT operations in 2002. New Replacement Ventilation Units (RVUs) for the MPPB ventilation system are under construction. These RVUs will facilitate exhaust control during future demolition of the MPPB.

Total curies released from the MPPB stack in 2014 are listed in Table 2-3, together with annual averages, maxima, and a comparison of average isotopic concentrations with the applicable DCSs. The sum of ratios for radiological concentrations from ANSTACK was 0.0051, well below the DOE guideline of 1.0. Airborne concentrations from the stack to the WVDP site boundary are further reduced by dispersion.

Results from air samples taken near the site boundary have confirmed that WVDP operations have had no discernible effect on off-site air quality.

Other On-Site Air Sampling Systems. Sampling systems similar to those of the MPPB are used to monitor airborne effluents from the former VIT heating ventilation and air conditioning system (ANVITSK), the STS/permanent ventilation system (PVS) stack (ANSTSTK), the container sorting and packaging facility (CSPF) ventilation stack (ANCSPFK), and the RHWF stack (ANRHWFK) (Figure A-6). Ventilation from the CSRF ventilation stack (ANCSRFK) was discontinued in 2011, and replaced by a portable ventilation unit. The CSRF PVU was not operated in 2014 due to lack of work activity in this facility. The CSRF is now in the process of D&D, and its PVU was removed for temporary use at the off-gas trench. Ventilation of the 01-14 building (ANCSSTK) was discontinued in October 2012 and the stack and 01-14 building were demolished in 2013. Ventilation from the CSPF in the LSA #4 was suspended in October 2014 due to lack of repackaging activity.
Permitted outdoor ventilation enclosures (OVEs) for the PVUs are used to provide the ventilation necessary for personnel safety while working with radioactive materials in areas outside permanently ventilated facilities or in areas where permanent ventilation must be augmented. Air samples from PVUs are collected continuously while emission points are discharging, and the data collected are included in annual evaluations of airborne emissions.

Appendix C presents total radioactivity released for specific radionuclides at each on-site air sampling location. No DCSs were exceeded by airborne emissions on an annualized basis during CY 2014. Locations with radiological results statistically greater than background values are summarized in Table 2-4.

Unplanned Radiological Airborne Release. No unplanned radiological airborne releases occurred in 2014.

Nonradiological Air Emissions. Nonradiological air emissions at the WVDP are regulated under an air facility registration certificate that caps (limits) nitrogen and sulfur oxide emissions (NO_x and SO_x, respectively) from the facility at 49.5 tons per year each. (See Table ECS-1.) The certificate applies to two site utility steam boilers, which are the only non-exempted sources of NO_x and SO_x at the site. In April 2013 the boilers were taken out of service. Consequently, there were no reportable NO_x and SO_x emissions in 2014.

Other units with the potential to emit nonradiological pollutants, such as generators listed in the certificate, are exempted with the understanding that each unit operates less than 500 hours per year.

TABLE 2-3

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Total Activity Released (Ci)</th>
<th>Average Concentration (µCi/mL)</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>DCS</th>
<th>Ratio of Average Concentration to DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>3.10±0.51E-07</td>
<td>4.17±0.69E-16</td>
<td>1.04E-15</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>26</td>
<td>4.92±0.16E-06</td>
<td>6.61±0.22E-15</td>
<td>3.26E-14</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>H-3</td>
<td>26</td>
<td>1.82±0.07E-03</td>
<td>2.44±0.09E-12</td>
<td>3.96E-12</td>
<td>2.1E-07</td>
<td><0.0001</td>
</tr>
<tr>
<td>Co-60</td>
<td>2</td>
<td>6.46±3.62E-08</td>
<td>8.69±4.86E-17</td>
<td>1.52E-16</td>
<td>3.6E-10</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>1.06±0.11E-06</td>
<td>1.42±0.15E-15</td>
<td>1.54E-15</td>
<td>1.0E-10</td>
<td><0.0001</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>1.40±0.09E-05</td>
<td>1.88±0.12E-14</td>
<td>2.00E-14</td>
<td>1.0E-10</td>
<td>0.0002</td>
</tr>
<tr>
<td>Cs-137</td>
<td>2</td>
<td>1.91±0.09E-06</td>
<td>2.57±0.11E-15</td>
<td>3.25E-15</td>
<td>8.8E-10</td>
<td><0.0001</td>
</tr>
<tr>
<td>Eu-154</td>
<td>2</td>
<td>9.81±9.62E-08</td>
<td>1.32±1.29E-16</td>
<td><2.04E-16</td>
<td>7.5E-11</td>
<td><0.0001</td>
</tr>
<tr>
<td>U-232</td>
<td>2</td>
<td>1.75±4.00E-09</td>
<td>2.35±5.38E-18</td>
<td><8.91E-18</td>
<td>4.7E-13</td>
<td><0.0001</td>
</tr>
<tr>
<td>U-233/234</td>
<td>2</td>
<td>1.82±7.0E-08</td>
<td>2.45±0.94E-17</td>
<td>2.84E-17</td>
<td>1.0E-12</td>
<td><0.0001</td>
</tr>
<tr>
<td>U-235/236</td>
<td>2</td>
<td>0.76±4.18E-09</td>
<td>1.02±5.61E-18</td>
<td><9.48E-18</td>
<td>1.2E-12</td>
<td><0.0001</td>
</tr>
<tr>
<td>U-238</td>
<td>2</td>
<td>2.38±0.83E-08</td>
<td>3.33±1.11E-17</td>
<td>4.41E-17</td>
<td>1.3E-12</td>
<td><0.0001</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>4.89±0.99E-08</td>
<td>6.57±1.33E-17</td>
<td>8.27E-17</td>
<td>8.8E-14</td>
<td>0.0007</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>9.29±1.34E-08</td>
<td>1.25±0.18E-16</td>
<td>1.25E-16</td>
<td>8.1E-14</td>
<td>0.0015</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>1.83±0.30E-07</td>
<td>2.46±0.41E-16</td>
<td>2.50E-16</td>
<td>9.7E-14</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

Sum of Ratios

| 0.0051 |

N - Number of samples.
NA - Not applicable.

a Half-lives are listed in Table UI-4.
b Total volume released at 50,000 cubic feet per minute = 7.44E+14 mL/year.
c DCSs are used as reference values for the application of best available technology per DOE Order 458.1.
d DCSs do not exist for indicator parameters gross alpha and gross beta.
e Total Uranium = 6.03±0.12E-02 g; average = 8.10±0.17E-11 µg/mL, includes uranium contribution from glass fiber filter matrix.
f DCS for Uranium-233 used for this comparison.
Environmental Surveillance

Ambient Air. In 2012, sixteen ambient air monitoring stations encircling the WVDP were installed on NYSERDA and private properties, located near the closest off-site receptor in each compass sector (see Figure A-7). Monitoring from these stations was initiated in October 2012 for operational baselining and equipment testing. CY 2014 represents the second full year of routine ambient air monitoring. The ambient air sampling program provides continuous environmental air sampling during all site activities for surveillance and regulatory compliance.

Samples from the ambient air monitoring locations are composited over a period of time. Filter samples are collected biweekly for gross alpha and gross beta screening and charcoal cartridges are collected monthly for iodine-129 screening analysis. Samples collected on a biweekly or monthly basis are also composited quarterly and analyzed for radioisotopes known to have been managed on the site. Samples of ambient air will include naturally occurring radioisotopes such as radon decay products which will be detected in the gross radioactivity analyses.

A high-volume sampler is included in the ambient air network located downwind in the prevailing wind direction, which is the direction of the hypothetical critical receptor (the historical MEOSI). This sampler operates at a flow rate more than five times the low-volume samplers and was installed to confirm the results of the lower volume sampling. The low-volume sampling system is able to detect site-managed radioisotopes to approximately 1% of each radioisotope’s environmental regulatory compliance level. The high-volume sampler can detect particulate radioisotopes down to about 0.1% of the compliance level. (Although the high-volume sampler does not include a sample for iodine-129, the co-located low-volume sampler does measure iodine-129.)

In 2015, the EPA approved use of the “environmental measurement” approach for estimating off-site dose from airborne emissions using the new ambient air data for the CY 2014 NESHAP report. In prior years, before the ambient ring was in place, the “measure and model” approach was used where on-site effluent concentrations were measured and input to an air dispersion model to predict off-site dose estimates.

The CY 2013 NESHAP report provides a comparison of the dose estimate using measured/estimated on-site air emissions input to CAP88 modeling, “the measure and model” approach, with the dose estimate using the off-site ambient air data, the “environmental measurement” approach. Both methods demonstrated the WVDP was in compliance for 2013. (See the Dose Assessment chapter for additional details.)

As the predominant potential source of air emissions on the site transitions from point sources (i.e., the MPPB stack) to diffuse sources (i.e., releases from building demolition), the use of ambient air monitoring samplers becomes a more appropriate method of demonstrating compliance with the NESHAP standards.

Data collected from January to December 2014, the second full year of ambient air monitoring, are summarized in Tables C-8 and C-9 of Appendix C. Gross alpha and gross beta data, collected biweekly, as well as the quarterly composited isotopic results have displayed average activities from the new ambient air network that are very similar in all sixteen sectors to the concentrations observed at AFGRVAL, the background ambient air sampler located 18 miles (29 km) south of the site in Great Valley, New York that has been monitored for many years (see Figure A-14). Throughout 2014, samples for radionuclides in air continued to be collected at this distant background location which samples regional air with very low potential to be affected by radiological releases from the WVDP.

None of the 2014 annual average radioisotopic results at the ambient air locations were positive (with a result greater than the uncertainty), and none exceeded 5.2% of the NESHAP concentration levels for regulatory compliance (see Table C-9). The computed ratios of the observed concentrations to the compliance levels are primarily a consequence of the minimum detection limits that can be obtained by the ambient air samplers. This is demonstrated by the fact that the sum of ratios for the high volume sampler AF16HNNW, is less than half the ratio of the low volume sampler at the same location due to the high volume sampler’s ability to detect lower concentrations.

Continuous on-site air sampling is also performed close to the work area during demolition of all radiologically contaminated facilities for health and safety purposes by radiological control technicians. Samples collected from these local samplers are analyzed for gross radioactivity on a daily basis during demolition activities.

Surface Water. On-site surface water drainage is routinely sampled at several points on the north and south plateaus, as shown in Appendix A, Figure A-2. Monitoring
Chapter 2. Environmental Monitoring

TABLE 2-4
2014 Comparison of Environmental Monitoring Results with Applicable Limits and Backgrounds

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Number of and Names of Sampling Locations</th>
<th>Locations with Results Greater than Applicable Limits or Screening Levels a (Constituent)</th>
<th>Number of Locations with Results Greater Than Background</th>
<th>Locations with Radiological Results b Statistically Greater than Background (Constituent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (1 background location=AFGRVAL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-site air emission points</td>
<td>6 ANSTACK ANSTSTK ANCBSFK ANVTISK ANRHWFK OVE/PVUs</td>
<td>0</td>
<td>4 ANSTACK (H-3, Sr-90, I-129, Cs-137, Pu-238, Pu-239/240, Am-241); ANSTSTK (I-129); ANCBSFK (I-129, Pu-238, Pu-239/240, Am-241); ANVTISK (I-129)</td>
<td></td>
</tr>
<tr>
<td>Surface water (2 background locations, one on Buttermilk Creek=WFBCBKG and one [historical] on Cattaraugus Creek=WFBIGBR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-site controlled effluents</td>
<td>2 WNSP001 WNSP007</td>
<td>0</td>
<td>1 WNSP001b (Gross alpha, Gross beta, H-3, Sr-90, Tc-99, I-129, Cs-137, U-232, U-233/234, U-235/236, U-238, Pu-238, Pu-239/240, Am-241)</td>
<td></td>
</tr>
<tr>
<td>On-site surface water</td>
<td>7 WNSP005 WNSWAMP WNSW74A WNNNDADR WNERB53 WNFRC67</td>
<td>WNSWAMP (Sr-90, Gross beta)</td>
<td>6 WNSP006b (Gross beta, Sr-90, U-233/234, U-238); WNSP005 (Gross beta, Sr-90); WNSWAMP (Gross beta, Sr-90, U-238); WNSW74A (Gross beta, Sr-90); WNNNDADR (Gross beta, H-3, Sr-90); WNERB53 (Gross beta, Sr-90)</td>
<td></td>
</tr>
<tr>
<td>Off-site surface water</td>
<td>2 WFBCTCB WFFELBR</td>
<td>WFBCTCBb (total iron c)</td>
<td>2 WFBCTCB (Gross beta); WFFELBR (Gross beta)</td>
<td></td>
</tr>
<tr>
<td>Soil (1 background location=SFGRVAL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-site soil</td>
<td>3 SFFXVRD SFRT240 SFRSPRD</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Sediment (2 background locations, one on Buttermilk Creek=SFBCED and one [historical] on Cattaraugus Creek=SFBIGSED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-site sediment/soil</td>
<td>3 SNSW74A SNSWAMP SNSP006</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Off-site sediment</td>
<td>3 SFTCSED SFSDSED SFCCSED</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

NA = Not applicable; no regulatory, guidance, or screening limits are available. NS = Not sampled in 2014. (Will be sampled again in 2017).

a Applicable regulatory, guidance, or screening limits are listed in Table UI-4 (radionuclides in air and water), and Appendix B-1 (water).
b NYS Class C water quality standards were applied at WFBCTCB.
c Historical measurements at background location WFBCBKG routinely exceeded the water quality standards for iron. (WFBCBKG is no longer sampled for nonradiological parameters.)
Chapter 2. Environmental Monitoring

WVDP Annual Site Environmental Report - Calendar Year 2014

2-9

points are sited at locations where releases from possible source areas on the north and south plateaus could be detected. Appendices B-4 and B-5 present data for site surface water drainage, and ambient surface water monitoring locations. Off-site sampling locations are shown on Figure A-5. Also provided for side-by-side comparison with these data are reference values, where available, including background ambient water monitoring data and/or pertinent ambient water quality standards and guidelines.

Radiological and nonradiological results from surface water samples were compared with applicable water quality standards and guidelines. Radiological results from on-site and downstream locations on Franks Creek and Buttermilk Creek in 2014 were also compared with 2014 results from the background location on Buttermilk Creek (WFBCBKG), upstream of the WVDP. (Chemical results were compared with historical background values from WFBCBKG, because sampling for chemical constituents was discontinued at this location in 2008.) Results from Cattaraugus Creek near Felton Bridge (sampling point WFFELBR), were compared with historical results from the upstream Cattaraugus Creek background at Bigelow Bridge (former sampling point WFBBIGBR). Locations with results exceeding applicable limits and those with results statistically greater than background values are summarized in Table 2-4.

South Plateau Surface Water. Surface water surrounding the two inactive underground radioactive waste disposal areas (the NDA, under DOE’s control, and the SDA, under NYSERDA’s control) is monitored on the south plateau. These disposal sites are possible contaminant sources to surface water. Southwest of the NDA, immediately west of the railroad tracks the HLW Cask Storage Pad was constructed in late 2013 and completed in early 2014 for future storage of the canisters of vitrified HLW currently stored in the MPPB. These canisters will be encased in heavily shielded casks before being transferred to the HLW Cask Storage Pad. Sixteen of these shielded casks were constructed in 2014 and preparations are underway.
FIGURE 2-1
Average Gross Beta and Strontium-90 Concentrations in Surface Water
on the South Plateau at WNNDADRa and WNERB53b
Before and After the NDA Interim Measure (IM) was Installed

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2-1}
\caption{Average Gross Beta and Strontium-90 Concentrations in Surface Water on the South Plateau at WNNDADRa and WNERB53b Before and After the NDA Interim Measure (IM) was Installed}
\end{figure}

Note: The upper limit of the uncertainty term is indicated with each point. Average gross beta and strontium-90 background concentrations in Buttermilk Creek (WFBCBKG) in CY 2014 were 2.18±0.73E-09 and -2.33±7.42E-10 \(\mu \text{Ci/mL} \), respectively.

a Sample point WNNDADR is located downstream, immediately north of the NDA.
b Sample point WNERB53 is located farther downstream, on Erdman Brook.

FIGURE 2-2
Average Concentration of Tritium in Surface Water at WNNDADR: 2005-2014

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2-2}
\caption{Average Concentration of Tritium in Surface Water at WNNDADR: 2005-2014}
\end{figure}

Note: The upper limit of the uncertainty term is indicated with each point. Average background tritium concentration in Buttermilk Creek (WFBCBKG) in CY 2014 was <8.99E-08 \(\mu \text{Ci/mL} \).
to begin transferring the canisters into them and moving them to the south plateau. Nearby areas of the south plateau are being used to temporarily store the three radioactive vessels removed from the VIT facility and to temporarily store and stage waste containers. Also located on the south plateau is the drum cell, a building formerly used to store drums of processed LLW. The drum cell has been empty since 2007, when the waste drums were shipped off site.

Surface water drainage downstream of the NDA is monitored at location WNNDADR, immediately north of the NDA, and further downstream at location WNERB53 on Erdman Brook. Some drainage from the western and northwestern portions of the SDA is also captured at WNNDADR and WNERB53. Although no radionuclide concentrations from these two locations are greater than (or even approach) DCSs, gross beta and strontium-90 concentrations have historically exceeded background concentrations at both WNNDADR and WNERB53, and tritium has exceeded background at WNNDADR. Levels above background were again observed in 2014. Residual soil contamination from past waste burial activities is thought to be the source of this radioactivity.

As part of an IM to limit groundwater, surface water, and precipitation infiltration into the NDA, a geomembrane cap and slurry wall were constructed at the NDA. The IM was completed in December 2008. (For more detail, see Chapter 4, Interim Measure [IM] under the discussion of “Groundwater Sampling Observations on the South Plateau Including the NRC-Licensed Disposal Area [NDA].”)

Figure 2-1 is a plot of average gross beta and strontium-90 concentrations in surface water at sample points WNNDADR and WNERB53 before completion of the IM compared to the current annual average concentrations. In CY 2014, average concentrations after the IM were over 80% lower at WNNDADR and over 60% lower at WNERB53 than historical concentrations, indicating the IM’s effectiveness in reducing groundwater migration through the NDA, which affects surface water drainage at these points.

Tritium concentrations at WNNDADR in CY 2014, shown on Figure 2-2, remained above background concentrations with the annual average increasing slightly as compared to 2013. Tritium concentrations at WNNDADR have been decreasing overall since routine monitoring began at this location. Since tritium’s half-life is slightly longer than 12 years, decreasing tritium concentrations may be partly attributable to radioactive decay. Concentrations have decreased from a high of 1.79E-05 µCi/mL in 1992 to 3.93E-07 µCi/mL in 2014.

Northeast of the SDA, Franks Creek is sampled to monitor drainage downstream of the drum cell and the eastern and southern borders of the SDA (point WNFRC67, on Figure A-2). In 2014, the gross beta concentrations at this sampling point were statistically indistinguishable from background, and well below the DCSs.

North Plateau Surface Water. On the north plateau, possible contaminant sources that could affect surface water include the WTF, MPPB, the lagoon system associated with the LLW2, waste handling and storage facilities, and seepage from the strontium-90 groundwater plume.

Besides the effluent and drainage locations discussed earlier in the liquid effluents section, a location on the east side of the MPPB (point WNSP005) monitors surface drainage on the north plateau. Annual average gross beta and strontium-90 concentrations statistically exceeded background concentrations at this sampling location during CY 2014 but were well below DCSs. One other sample point, WNSP006, is sampled at Franks Creek at the security fence. WNSP006 is downgradient of the lagoon 3 outfall (point WNSP001). In 2014, as in previous years, concentrations at WNSP006 statistically exceeded background for gross beta, strontium-90, uranium-233/234, and uranium-238. The observed radioisotope concentrations were all well below DCSs.

Off-Site Surface Water. Surface water samples were collected at three off-site locations in 2014: one upstream background location on Buttermilk Creek (WFBCBKG), one downstream location on Buttermilk Creek (WFBCBKG), and one downstream location on Cattaraugus Creek (WFFELBR) (see Figure A-5). These three locations are described below:

- Buttermilk Creek receives surface drainage from the WNYNSC. The background monitoring point is located upstream of the WVDP at Fox Valley Road (WFBCBKG) and the downstream location on Buttermilk Creek is located at Thomas Corners Bridge (WFBCBKG), just before Buttermilk Creek flows into Cattaraugus Creek.
- Further downstream of Thomas Corners Bridge, samples are collected from Cattaraugus Creek at Felton Bridge (WFFELBR), the first point of public access to surface water downstream of the WVDP.
Chapter 2. Environmental Monitoring

Until discontinuing sampling in 2008, background samples were also collected from Cattaraugus Creek at Bigelow Bridge, at Route 240, upstream of the confluence of Buttermilk Creek and Cattaraugus Creek (WFBIGBR). Historical data from this location from 1991 through 2007 have been used to establish upstream background concentrations for Cattaraugus Creek for comparison to samples collected at WFFELBR (see Table B5-A).

Samples from all three off-site surface water locations are analyzed for radioactivity. As noted earlier, strontium-90 concentrations were statistically indistinguishable from background in 2014 in the surface water at WFFELBR, the first point of public access downstream of the site on Cattaraugus Creek. The annual average strontium-90 concentration at this location was a non-detect value of <8.97E-10 μCi/mL. Upstream of WFFELBR, at Thomas Corners Bridge (WFBCTCB) which is located downstream of the site on Buttermilk Creek, the average measured strontium-90 concentration in 2014 (1.51E-09 μCi/mL) is slightly higher than the ten-year average background concentration (<8.62E-10 μCi/mL) upstream of the site on Buttermilk Creek (WFBCKG). The WFBCTCB average is less than 0.2% of the strontium-90 DCS and is an estimated result below the contract required detection limit for strontium-90 in water of 2.0E-09 μCi/mL.

Consistent with historical data, gross beta was detected in both downstream locations as well as upstream (see Tables B-5A, B-5B, and B-5G) in 2014. Gross beta is naturally occurring and is frequently detected in surface water samples due to minor amounts of sediment in the samples. All of these concentrations are well below the DCS. The annual average gross beta result at WFFELBR in 2014 (3.01E-09 μCi/mL) was less than 0.3% of the DCS.

Samples from WFBCTCB, down stream of the site on Buttermilk Creek are also analyzed for water quality parameters. Applicable guidance levels were exceeded at WFBCTCB for only one water quality parameter. The New York State Class C and D water quality limit for total iron, 0.30 milligram per liter (mg/L), was exceeded with concentrations of 0.73 to 0.78 mg/L. The limit for iron was also exceeded at background location WFBCKG in eight of the 10 years of measurement before sampling for metals was discontinued in 2008. Historical iron results at WFBCKG ranged from 0.16 mg/L to 7.4 mg/L. These fluctuating, elevated levels of iron are thought to reflect natural variability of stream conditions, and are not related to WVDP activities.

Sediment and Soil. Airborne particulates may be deposited onto soil by wind or precipitation. Particulate matter in streams can adsorb radiological constituents in liquid effluents and settle on the stream bottom as sediment. Soils and sediment may subsequently be eroded or resuspended, especially during periods of high winds or high stream flow. The resuspended particles may provide a pathway for radiological constituents to reach humans either directly via exposure or indirectly through the food pathway.

As part of the monitoring program, on-site sediment/soil samples are collected every five years at three locations on the north plateau where drainage has the potential to be contaminated. On-site soils are collected at SNSP006, SNSWAMP, and SNSW74A (see Figure A-2). Soil samples are also collected at one background location (SFGRVAL, shown on Figure A-14) and three former near-site air sampling locations (SFSPREP, SFFXVRD, and SFRRT240), shown on Figure A-5. Additional off-site sediment samples are collected at one background location on Buttermilk Creek (SFBCSED) and at three downstream locations, one on Buttermilk Creek (SFTCSED) and two on Cattaraugus Creek (SFCCSED and SFSDSED) (see Figure A-5). Soil and sediment samples were last collected in 2012 and will next be collected in 2017.

Food. Food samples are collected from locations near the site (Figure A-11) and from remote locations (Figure A-14). Milk and venison samples are collected every year. Fish, apples, beans, and corn are collected every five years, with 2012 being the most recent collection year. Fish and deer are collected during seasons when they would normally be taken by sportsmen. Corn, apples, and beans are collected at harvest time. Edible portions are analyzed for radionuclides. Data from 2014 for milk and venison samples are presented in Appendix E. Fish and food crops will be sampled next in 2017.

In 2014, milk and venison data continue to demonstrate that the Project has a minimal effect on local food sources. Concentrations of cesium-137 have been observed in both background and near-site deer since venison sampling was initiated at the WVDP. The low concentrations of cesium-137 in deer close to the site were statistically indistinguishable from the background concentrations in deer more than 9.3 miles (15 km) from the site, as has been observed historically. No radionuclides were detected in milk or venison samples statistically above background in 2014. Dose calculations based on results from food sources have consistently confirmed low dose...
estimates modeled on the basis of results from air and water monitoring. (See Chapter 3, “Dose Assessment.”)

Environmental Radiation. Thermoluminescent Dosimeters (TLDs) are placed on site at waste management units, at the WVDP security fence, around the WNYNSC perimeter and the access road, and at a background location in Great Valley, remote from the WVDP. The TLDs directly measure radiation in the environment. A new TLD was deployed in early 2014 along Rock Springs Road on the property fence nearest the southwest corner of the HLW Cask Storage Pad to monitor any potential future radiation from the HLW casks that will be stored on the pad beginning in 2015. Otherwise, the location of TLDs remained the same from 2013 to 2014.

Results at perimeter locations were statistically the same as results from the background TLD (DNTLD23), indicating no measurable dose from Project activities at these locations. Figure 2-3 presents a graph of average annual exposure rates (in microroentgen per hour) over the last 10 years at background and perimeter locations. As shown, results at perimeter locations are comparable to background. In addition, no discernible trends over time are evident. Historical measurements at community locations (discontinued in 2008) have also shown no difference from background. Perimeter TLD locations (off-site) are shown on Figure A-13 in Appendix A, and the data are presented in Table F-1 in Appendix F.

Consistent with historical data, results from three on-site/near-site TLDs (DNTLD24, DNTLD38, and DNTLD40) located near north plateau on-site waste storage facilities in 2014 were generally higher than background results as consistently observed in recent years. These locations are within the WNYNSC boundary and are not accessible by the public. On the south plateau, on-site/near-site TLD results remained at background levels. On-site/near-site TLD locations are shown on Figure A-12 in Appendix A, and the data are presented in Table F-2 in Appendix F.

Meteorological Monitoring. Meteorological monitoring at the WVDP provides representative and verifiable data that characterize the local climatology. These data are used to assess potential effects of routine and non-routine releases of airborne radioactivity and to provide input to dispersion models which can be used to calculate dose to off-site residents.

![FIGURE 2-3](image)

10-Year Trends of Environmental Radiation Levels at Perimeter and Background Thermoluminescent Dosimeters (TLDs)

Note: The upper and lower limits of the uncertainty term are plotted with each result.
The on-site 197-ft (60-m) meteorological tower (Figure A-1) continuously monitors wind speed, wind direction, and temperature at both the 197-ft (60-m) and 33-ft (10-m) elevations. Site barometric pressure is also measured at ground level. Precipitation was monitored east of the main parking lot in 2014. Monthly CY 2014 precipitation totals compared with 10-year monthly averages are presented in Table 2-5.

The meteorological tower supplies data to the primary digital and analog data acquisition systems on site. The systems are provided with either uninterruptible or standby power backup in the event of site power failures. In 2014, the data recovery rate (the time valid data were logged versus the total elapsed time) was 96.6%.

Documentation, such as meteorological system calibration records, site log books, and analog strip charts, is stored in protected archives. “Wind roses” showing the predominant wind direction as measured at the meteorological tower (60-m and 10-m elevations) are shown on Figure 2-4. The wind measurements at the 10-m elevation are influenced by the orientation of the topography around the site. As expected, wind speeds measured at the 10-m elevation were lower than those from the 60-m elevation.

Because dispersive capabilities of the atmosphere are dependent upon wind speed, wind direction, and atmospheric stability (which includes a function of the difference in temperature between two elevations), these parameters are closely monitored and are available to the Emergency Response Organization (ERO) at the WVDP. If an air release occurred, meteorological data would be used to predict the direction of plume migration.

Drinking Water

Project drinking water (potable water) and utility water were drawn from two surface water lakes located within the WNYNSC through September 18, 2014 when the supply source was converted to groundwater. Two bedrock wells were installed in the central area of the site in 2014 capable of satisfying the current potable and process water requirements. Supplemental water needed for emergencies, such as a major fire, will continue to be supplied by the lakes. Conversion to groundwater as the primary source of potable water will allow for closure and demolition of the site utility room attached to the MPPB.

Drinking water continues to be monitored for both radiological and chemical constituents, with slightly different sampling requirements for the groundwater source. It is monitored at the distribution entry point and at other site tap water locations to verify compliance with EPA, NYSDOH, and Cattaraugus County Health Department regulations. The water supply is also monitored at the groundwater supply wells and at three nearby bedrock wells as part of the source water protection plan. Results from 2014 indicated that the Project’s drinking water continued to remain below the local, state, and federal Maximum Contaminant Levels (MCLs) and drinking water standards. Radiological measurements for the supply wells and the nearby bedrock wells were also at background levels. The 2014 results for both water supply systems are presented in Appendix B-6.

Special Projects

During 2014, DOE in cooperation with NYSERDA commissioned an aerial survey to measure radiation at the WNYNSC and a portion of Cattaraugus Creek from the boundary of the Center to Lake Erie. The survey is intended to serve as a new baseline for both on-site and off-site radiation levels and provide comprehensive updated information for Phase 2 Decisionmaking. The aerial helicopter survey began in September and the results are expected to be discussed at a public meeting in the near future.

Table 2-5

<table>
<thead>
<tr>
<th>Month</th>
<th>2014 Monthly Total (inches)</th>
<th>10-Year Monthly Average (2004 through 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>1.79</td>
<td>2.54</td>
</tr>
<tr>
<td>February</td>
<td>2.44</td>
<td>2.59</td>
</tr>
<tr>
<td>March</td>
<td>2.98</td>
<td>2.88</td>
</tr>
<tr>
<td>April</td>
<td>3.47</td>
<td>3.78</td>
</tr>
<tr>
<td>May</td>
<td>2.78</td>
<td>2.32</td>
</tr>
<tr>
<td>June</td>
<td>3.68</td>
<td>3.33</td>
</tr>
<tr>
<td>July</td>
<td>4.21</td>
<td>4.74</td>
</tr>
<tr>
<td>August</td>
<td>4.10</td>
<td>4.20</td>
</tr>
<tr>
<td>September</td>
<td>1.87</td>
<td>4.56</td>
</tr>
<tr>
<td>October</td>
<td>3.17</td>
<td>3.52</td>
</tr>
<tr>
<td>November</td>
<td>2.65</td>
<td>3.01</td>
</tr>
<tr>
<td>December</td>
<td>2.12</td>
<td>4.97</td>
</tr>
<tr>
<td>Total (inches)</td>
<td>35.3</td>
<td>42.4</td>
</tr>
<tr>
<td>Total (centimeters)</td>
<td>89.6</td>
<td>107.8</td>
</tr>
</tbody>
</table>
Monitoring Program Changes

There were no major changes to the environmental sampling program during 2014. The most significant change that took place in 2014 was the revised drinking water sampling program required for a groundwater supply source versus a surface water supply source. This change took effect in September 2014.

Additional minor changes included:

- discontinued sampling of the sanitary waste discharge at location WNSP007 under the SPDES program in November 2014 as no waste streams are currently present, and

- monitoring radiation at a new TLD deployed along Rock Springs Road on the property fence nearest the southwest corner of the HLW Cask Storage Pad. Monitoring of TLD #34 at the Drum Cell will be discontinued in 2015.

Calendar year 2014 was the second full year of sampling the new ambient air monitoring network.

Environmental Monitoring Summary

As in the past, although concentrations of certain radiological and nonradiological constituents from samples collected within the security fence exceeded comparison levels or background concentrations, few results from near-site or downstream locations accessible to the public exceeded comparison levels or background. (See Table 2-4.)

Monitoring results from CY 2014 continued to demonstrate minimal or no adverse effects of the WVDP on the surrounding environment and confirmed the effectiveness of radiological control measures practiced at the WVDP.
FIGURE 2-4
Wind Frequency and Speed From the Meteorological Tower (10-m and 60-m Elevations)
January 1-December 31, 2014

Key:
Numbers indicate sector mean wind speed.
Sectors are directions from which the wind is blowing.
Wind Speed Range (m/sec)

- **0.5-3.0**
- **3.0-6.0**
- **6.0-9.0**
- **9.0-12.0**
- **>12.0**
Radiation Sources at the WVDP

Members of the public are routinely exposed to natural and man-made sources of ionizing radiation. An individual living in the U.S. is estimated to receive an average annual effective dose equivalent (EDE) of about 620 mrem (6.2 mSv) (National Council on Radiation Protection and Measurements [NCRP] Report 160, 2009). NCRP Report No. 160, an update of NCRP Report No. 93 (1987), noted that the average member of the U.S. population was exposed to significantly more radiation from medical procedures than from any other source. (See the “Useful Information” section of this report for discussions of ionizing radiation. See the inset on page 3-3 for discussions of “Radiation Dose” and “Units of Dose Measurement.”)

Each year, very small quantities of the radioactive materials remaining at the WVDP are released to the environment. Radioactive materials at the WVDP are residues from the commercial reprocessing of nuclear fuel by NFS in the 1960s and early 1970s. Emissions and effluents are strictly controlled so that release quantities are kept ALARA.

Exposure Pathways

An exposure pathway consists of a route for contamination to be transported by an environmental medium from a source to a receptor. Table 3-1 summarizes the potential exposure pathways to the local off-site population and describes the rationale for including or excluding each pathway when calculating dose from the WVDP.

Potential exposure pathways include: inhalation of gases and particulates, ingestion of locally grown food products and game, and exposure to external penetrating radiation emitted from contaminated materials. Drinking water is not considered a pathway from the WVDP to the public because surveys have determined that no off-site public

FIGURE 3-1
Comparison of Doses From Natural and Man-Made Sources to the Dose From 2014 WVDP Effluents

Chapter 3. Dose Assessment

WVDP Annual Site Environmental Report - Calendar Year 2014

Chapter 3. Dose Assessment

Land Use Survey and Population Data

Population information is required when using computer models for annual dose assessments. Periodic surveys of local residents provide information about family size, and sources of food. Population around the WVDP by sector and distance from the CY 2010 census is presented on Figure A-15. These data indicate an estimated 1.62 million people live within 50 mi (80 km) of the site. This total includes approximately 128,000 Canadians (Statistics Canada, 2011). The spatial distribution of population within the 50-mi (80-km) radius of the site may be utilized in both the air and waterborne dose calculations. Information from the most recent land use survey, conducted in early 2002, was used to update the residential locations within 3.1 mi (5 km) of the site. In 2008, a field verification of the residents closest to the site was conducted to confirm the location of the nearest receptor in each sector. Updates to the nearest residents are performed periodically when there are local population changes.

Dose to the Public

Each year an estimate is made of the potential radiological dose to the public that is attributable to WVDP operations and effluents during that calendar year. Estimates are calculated to confirm that no individual could have received a dose that exceeded the limits for protection of the public, as established by DOE or EPA.

Figure 3-1 shows the estimated (all pathway) maximum individual dose from the WVDP in CY 2014 compared with the average annual dose a U.S. resident receives from man-made and natural background sources.

The 2014 estimated dose (<0.55 mrem [<0.0055 mSv]) from the Project to an off-site resident is far below the federal standard of 100 mrem for dose from all pathways allowed from any DOE site operation in a calendar year, confirming that efforts at the WVDP to minimize radiological releases are consistent with the ALARA philosophy of radiation protection.

Dose Assessment Methodology

Dose to the public is evaluated consistent with the requirements of DOE Order 458.1. Measurements (and/or estimates) of radionuclide concentrations in liquid and air released from the Project are summarized for the CY of interest. Ambient and background measurements are also collected. An estimate of the effective dose equivalent (EDE) to the potential maximally exposed member of the general public, and the collective EDE to the population within a 50-mi (80-km) radius of the site is made using these data as input to either EPA- and DOE-approved models, or using comparisons to EPA- and DOE-approved standards. (See the inset on “Radiation Dose” and “Units of Dose Measurement.”)

TABLE 3-1
Potential Exposure Pathways from the WVDP to the Local Off-Site Population

<table>
<thead>
<tr>
<th>Exposure Pathway and Transporting Medium</th>
<th>Reason for Including/Excluding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation of gases and particulates in air (included)</td>
<td>Off-site transport of contaminants from stacks, vents, diffuse sources, or resuspended particulates from soil or water.</td>
</tr>
<tr>
<td>Ingestion of vegetables, cultivated crops, venison, milk, and fish (included)</td>
<td>Local agricultural products irrigated with potentially contaminated surface or groundwater; airborne deposition on leaves and uptake of deposited contaminants; venison and milk from animals that have inhaled or ingested contaminants; fish that have been exposed to or ingested contaminants in surface water and sediment.</td>
</tr>
<tr>
<td>Ingestion of surface and groundwater (excluded)</td>
<td>No documented use of local surface water or downgradient groundwater wells as drinking water by local residents.</td>
</tr>
<tr>
<td>External exposure to radiation from particulates and gases directly from air or surface water or indirectly from surface deposition (included)</td>
<td>Transport of air particulates and gases to off-site receptors; transport of contaminants in surface water and direct exposure when swimming, wading, boating, or fishing.</td>
</tr>
</tbody>
</table>

water supplies are drawn from downstream Cattaraugus Creek before Lake Erie or from groundwater in aquifers potentially affected by the WVDP.
Chapter 3. Dose Assessment

Radiation Dose

The energy released from a radionuclide is eventually deposited in matter encountered along the path of the radiation. The radiation energy absorbed by a unit mass of material is referred to as the absorbed dose. The absorbing material can be either inanimate matter or living tissue.

Alpha particles leave a dense track of ionization as they travel through tissue and thus deliver the most dose per unit path-length. However, alpha particles are not penetrating and must be taken into the body by inhalation or ingestion to cause harm. Beta and gamma radiation can penetrate the protective dead skin layer of the body from the outside, resulting in exposure of the internal organs to radiation.

Because beta and gamma radiations deposit much less energy in tissue per unit path-length relative to alpha radiation, they produce fewer biological effects for the same absorbed dose. To allow for the different biological effects of different kinds of radiation, the absorbed dose is multiplied by a quality factor to yield a unit called the dose equivalent. A radiation dose expressed as a dose equivalent, rather than as an absorbed dose, permits the risks from different types of radiation exposure to be compared with each other (e.g., exposure to alpha radiation compared with exposure to gamma radiation). For this reason, regulatory agencies limit the dose to individuals in terms of total dose equivalent. Refer to the “Useful Information” section for discussion of ionizing radiation.

Units of Dose Measurement

The unit for dose equivalent in common use in the U.S. is the rem. The international unit of dose equivalent is the sievert (Sv), which is equal to 100 rem. The millirem and millisievert, used more frequently to report the low dose equivalents encountered in environmental exposures, are equal to one-thousandth of a rem or sievert, respectively. Other radioactivity unit conversions are found in the “Useful Information” section at the back of this report.

The effective dose equivalent (EDE), also expressed in units of rem or Sv, provides a means of combining unequal organ and tissue doses into a single “effective” whole body dose that represents a comparable risk probability. The probability that a given dose will result in the induction of a fatal cancer is referred to as the risk associated with that dose. For waterborne releases, the EDE is calculated by multiplying the organ dose equivalent by the organ-weighting factors developed by the International Commission on Radiological Protection (ICRP) in Publications 26 (1977) and 30 (1979). For airborne emissions, the EDE calculation is based upon factors in Federal Guidance Report 13, and National Council on Radiation Protection and Measurements (NCRP) report Number 123. The weighting factor is a ratio of the risk from a specific organ or tissue dose to the total risk resulting from an equal whole body dose. All organ-weighted dose equivalents are then summed to obtain the EDE.

The dose from internally deposited radionuclides calculated for a 50-year period following intake is called the 50-year committed effective dose equivalent (CEDE). The CEDE sums the dose to an individual over 50 years to account for the biological retention of radionuclides in the body. The total EDE for one year of exposure to radioactivity is calculated by adding the CEDE to the dose equivalent from external, penetrating radiation received during the year. Unless otherwise specified, all doses discussed here are total EDE values, which include the CEDE for internal emitters.

A collective population dose is expressed in units of person-rem or person-sievert because the individual doses are summed over the entire potentially exposed population. The average individual dose can therefore be estimated by dividing the collective dose by the population.
Potential dose to the public is also evaluated from radioactivity measurements in food from locations near the WVDP boundaries to corroborate results from the air and water pathways dose calculations (Figure 3-2). Vegetables, fruit, milk, venison, and fish samples from the WVDP vicinity are collected and analyzed for radiological constituents. (Biological sampling locations are shown on Figures A-11 and A-14.) Radioactivity measurements in food from locations near the site are compared with similar measurements from samples collected at background locations to the WVDP. If any near-site results are higher than background results, dose calculations are performed. These results are used as a conservative, independent confirmation of the dose estimates from all environmental pathways.

Potential dose to near-site residents and the local population from the waterborne pathway is estimated using dose conversion factors that are derived from a site-specific surface water exposure model. Potential dose via the air pathway can be estimated using an air dose model with input from measured or estimated emissions from on-site sources, or may be estimated by comparing measured ambient air radioactivity with EPA dose standards.

The use of the ambient air monitoring network has become increasingly important as point source discharges are curtailed and work activities at the WVDP progress toward decommissioning and/or facility demolition. Since vitrification was completed in 2002, the primary work performed in the MPPB has been decontamination of the rooms and cells, resulting in very low point source emissions. Consequently, in recent years, diffuse sources, such as radioactivity that is released to the air from natural evaporation from the surface of the lagoon system, have been the most significant contributor to the overall modeled airborne dose.

During demolition of the 01-14 building, no measured radioactivity increases were observed at either the off-site ambient air monitoring network encircling the site or at the on-site work area air monitors during demolition, indicating demolition of the 01-14 building was performed safely. Only two small structures were demolished in 2014, the 10 foot-by 10 foot, one-level Con-Ed building and an equipment shed for the drum cell (T-FS-04). No increases were observed in the 2014 air monitoring network during demolition of these structures.

Dose From Airborne Emissions

Airborne radionuclide emissions are regulated by EPA under the Clean Air Act (CAA) and its implementing regulations. DOE facilities are subject to 40 CFR 61, Subpart H, National Emission Standards for Hazardous Pollutants (NESHAP), which contains the national standards for emissions of radionuclides other than radon.
from DOE facilities. The applicable standard is a maximum of 10 mrem (0.1 mSv) EDE to any member of the public in any year. In mid-April 2015, EPA approved use of the WVDP ambient air monitoring data to demonstrate compliance with the Clean Air Act (CAA) regulations.

The ambient air monitoring network consists of sixteen low-volume ambient air samplers encircling the WVDP within approximately a mile of the site. An additional high-volume sampler is placed in the NNW sector, the predominant downwind direction and approximate location of the historically modeled maximally exposed individual.

These ambient air samplers were placed on NYSERDA or private property near the closest off-site receptor in each compass sector (as shown on Figure A-7). The samplers were 97% operational in 2014, the second complete year the ambient network was in service.

Maximum Dose (Airborne) to an Off-Site Individual. The radiological dose that an individual could have received is calculated from the concentrations of radionuclides that are found to be present in the filter media from each ambient air sampler. To determine dose, the annual average radioactivity concentrations (without background subtracted) from each network perimeter sampler are compared to the concentration levels for environmental compliance (40 CFR 61, Subpart H, Table 2 of Appendix E) to determine a radionuclide specific compliance ratio (a value showing what fraction of the limit was measured in the ambient air). The concentration levels for environmental compliance represent the annual average radionuclide concentrations that correspond to a 10 mrem/year EDE. It follows that a measured concentration that is a fraction of the standard corresponds to an equivalent fraction of the 10 mrem dose. Therefore, the sum of fractions for each sampler location is converted to dose by multiplying the sum by 10 mrem. Compliance with the NESHAP standard is demonstrated when the sum of ratios is less than 1.

Filter media from each ambient air sampler around the WVDP were analyzed throughout 2014. The average sector specific airborne radioactivity measurements are summarized in Appendix C, Tables C-8 and C-9. Airborne releases of radionuclides from the WVDP are usually too small for their concentrations to be detected. When the measurements are below the detection limit of the instruments, the uncertainties in the concentrations are used to calculate the compliance ratio.

The estimated dose using the 2014 ambient air sampling data was based on the compliance ratios shown in the last column of Table C-9, in Appendix C. The maximum value of the sum of fractions from the ambient air monitoring data was <0.052. Multiplying this sum of fractions by 10 produces a maximum potential dose of <0.52 mrem (<5.2E-03 mSv), which is below the 10 mrem (0.1 mSv) NESHAP limit established by EPA and mandated by DOE Order 458.1. The 2014 estimated dose is the hypothetical upper bound of the potential individual dose rather than an actual dose.

The sampler location with the highest annual sum of fractions is considered to be the location of the critical receptor (formerly referred to as the Maximally Exposed Off-Site Individual [MEOSI]) for reporting purposes. Based on the ambient air sampling results for CY 2014, the critical receptor is located in the WNW sector (at sampler AF14_WNW) as shown bolded on Table C-9. Historically the MEOSI was most frequently located in the NNW sector. It is anticipated that the sector with the maximum ratio based on the ambient air sampling results (and thus the critical receptor) may vary annually since the annual average ambient air radioactivity measurements are all below detection limits.

Comparison of Modeled Versus Measured Dose Estimates. In the past, radiological sampling results from on-site emission locations were used together with annual weather measurements and demographic information to
evaluate dose from airborne emissions. Through CY 2013, airborne radioactive materials released from stacks and diffuse sources on the WVDP property were modeled using the EPA-approved CAP88-PC computer code to demonstrate compliance with the CAA. This air dispersion code estimates human dose for the ingestion, inhalation, air immersion, and ground surface pathways. (See “CAP88-PC Computer Code” in the “Useful Information” section of this report.) In 2013 the estimated dose from the air pathway was 0.0032 mrem.

In 2013, the CAP88 modeled dose estimates were compared with the dose estimated using the 2013 ambient air monitoring data. The maximum value of the sum of fractions from the 2013 ambient air monitoring data was <0.047. Multiplying this sum of fractions by 10 mrem produced a dose of <0.47 mrem. Since all the actual average annual results for each ambient air sampler were below the detection limit (therefore considered non-detects), this dose estimate was consequently the upper limit of the potential dose from the air pathway. Both dose estimates are orders of magnitude lower than the 10 mrem/year NESHAP standard. The difference in the estimated dose between the measured versus the modeled approach is due to the computational methodologies. EPA reviewed both computational methods and their associated data and found the ambient air monitoring to be acceptable for compliance.

Continuous Air Effluent Monitoring. The on-site ventilation stacks are monitored continuously while in operation, and will continue to be monitored until building ventilation is terminated. There have been no significant changes in air emissions from the WVDP since vitrification was completed.

Radon-220

Radon-220, also known as thoron, is a naturally occurring gaseous decay product of thorium-232 present in the airborne emissions from the WVDP MPPB. Radon-220 is also associated with the thorium reduction extraction (THOREX) process-related thorium-232 and uranium-232 in the HLW.

As reported in Chapter 2 of the 1996 WVDP ASER (West Valley Nuclear Services Company [WVNSCO] and Dames & Moore, June 1997), thoron levels were observed to increase during startup of the 1996 HLW VIT process. An estimate of thoron released during each waste concentration cycle was developed and used to determine a theoretical annual release. During the VIT phase, an average of about 12 curies per day were assumed to have been released. In 2014, with the VIT process long since completed, the average thoron release is conservatively estimated to be about three curies per day.

Although large numbers of curies were released relative to other radionuclides, the calculated dose from thoron is quite small because of its short decay half-life and other characteristics. The NESHAP rule specifically excludes thoron from air emission dose calculations, so a dose estimate using CAP88-PC was calculated separately. Based on the 2013 modeling results, the theoretical dose from radon to the MEOSI, located 1.2 mile (mi) (1.9 kilometer [km]) north-northwest of the site, would have been 0.094 mrem (0.00094 mSv), and the collective dose to the population within a 50-mi (80-km) radius would have been 4.5 person-rem (0.045 person-Sv). The dose contribution from radon would be approximately the same in 2014 as in 2013 because the source (3 Ci/day), the meteorology, and the population are basically the same. (See Table 3-2.) The theoretical dose from radon is within the same range as historical doses from radionuclides found in WVDP effluents.

With VIT completed, thoron releases have decreased to pre-VIT levels. The figure presented here provides a relative indication of recent trends in the estimated annual thoron releases.

![Estimated Radon-220 Releases From the WVDP](chart)
Iodine-129, a long-lived radionuclide, has routinely been found in main stack emissions and continued to be the largest contributor to the dose from airborne emissions through 2013. During the years when the HLW was being vitrified (1996 to 2002), iodine-129 releases increased because gaseous iodine was not as efficiently removed by the VIT process off-gas treatment system as were most other radionuclides. As more HLW was removed from the tanks and converted into glass, less waste was available to emit iodine-129 and the total emitted decreased. In 2014, measured iodine-129 concentrations in main stack emissions remained below pre-VIT levels.

At the WVDP, the maximum contribution to the modeled dose from airborne releases from point source emissions has historically originated from two primary locations, ANSTACK, the MPPB stack, which ventilates the process building, and ANSTSTK, the STS stack, which ventilates the underground HLW tanks. Trend graphs of annual average gross alpha, gross beta and iodine-129 concentrations at ANSTACK and ANSTSTK over the past fifteen years demonstrate that there were no significant changes in the emissions from these primary sources in 2014, as shown on Figure 3-3.

Collective Population Dose (Airborne). About 1.62 million people were estimated to reside in the U.S. and Canada within 50 mi (80 km) of the WVDP. (See Figure A-15.) Historically, the output from the CAP88-PC code was used to determine the total EDE from air emissions to the MEOSI and the collective EDE to the population within a 50 mile radius of the site. The model takes into account meteorological data and the spatial distribution of the public surrounding the site to determine the total collective population dose. Without the model, it is possible to estimate a collective population dose using the historical relationship between the individual dose and the population dose since there were no significant changes in meteorology or population in 2014. A conservative estimate of the collective population dose for 2014 uses the ratio of the 2013 modeled individual dose to the 2013 population dose multiplied by the 2014 individual dose, to produce a 2014 population dose of <1.8 person-rem (<0.018 person-Sv) total EDE from radioactive nonradon airborne emissions released from the WVDP. The resulting average EDE per individual within 50 mi (80 km) of the WVDP computes to <0.0011 mrem (<0.00011 mSv).

Table 3-2 summarizes the dose from both the air and water exposure pathways. Although radon is specifically excluded from the NESHAP regulation, an estimate of dose from radon at the WVDP is also included in Table 3-2 for comparison purposes. (For a detailed discussion of radon in air emissions from the WVDP, see the inset on “Radon-220.”)

Predicted Dose From Waterborne Releases

Currently there are no EPA standards establishing limits on the radiation dose to members of the public from liquid effluents, except as applied in 40 CFR Part 141, National Primary Drinking Water Regulations. Corollary limits for community water supplies are set by the NYSDOH in the New York State Sanitary Code (10 NYCRR 5-1). Radionuclides are not regulated under the site’s SPDES permit. However, special requirements in the permit specify that radionuclide concentrations in the discharge are subject to requirements of DOE Order 5400.5 (replaced by DOE Order 458.1, “Radiation Protection of the Public and the Environment.”)

As indicated in Table 3-1, public drinking water does not represent a potential source of exposure to radioactivity from Project activities. Cattaraugus Creek is not used as a drinking water supply; therefore, a comparison of estimated doses from this source with the 4-mrem/year (0.04-mSv/year) EPA and NYSDOH drinking water limits is not appropriate (although values are well below the drinking water limits). Population dose estimates are based on the presumption that radionuclides are even further diluted in Lake Erie before reaching any municipal water supplies.

Because the Project’s liquid effluents eventually reach Cattaraugus Creek, the most important waterborne exposure pathway is the consumption of fish from the creek by local sportsmen and residents. Exposure to external radiation from shoreline contamination or in the water is also considered in the model for estimating radiation dose.

The computer codes GENII version 1.485 (Pacific Northwest Laboratory, 1988), which implements the models in the NRC Regulatory Guide 1.109 (NRC, 1977), and LADTAP II (Simpson and McGill, 1980) were used to calculate site-specific unit dose factors (UDFs) for routine waterborne releases and dispersion of these effluents. The UDFs derived from those codes are tabulated in the “Manual for Radiological Assessment of Environmental Releases at the WVDP,” WVDP-065 (CHBWV, 2012).
FIGURE 3-3
Historical Trends in Measured Concentrations from Primary Point Sources

Gross Alpha - Annual Average Concentration

DCS for Am-241 (primary alpha emitter from stacks) = 9.7E-14 µCi/mL

Gross Beta - Annual Average Concentration

DCS for Cs-137 (primary beta emitter from stacks) = 8.8E-10 µCi/mL

Iodine-129 - Annual Average Concentration

DCS for I-129 = 1.0E-10 µCi/mL
Four batches of liquid effluents, totaling about 5.8 million gal (21.8 million L), were released from the lagoon 3 weir WNSP001 (SPDES point 001) during 2014. Measurements of the radioactivity discharged in these effluents were combined with the UDFs to calculate the EDE to the MEOSI and the collective EDE to the population living within a 50-mi (80-km) radius of the WVDP. (See Table 3-2.)

In addition to measurements from WNSP001, radioactivity measurements from WWTF effluents (WNSP007) were included in the EDE calculations.

Besides the two controlled release points at WNSP001 and WNSP007, water from two natural drainage channels on the north plateau originating on the Project premises contain measurable concentrations of radioactivity: the northeast swamp (WNSWAMP) and north swamp (WNSW74A). Although releases from WNSWAMP and WNSW74A are not considered “controlled” releases, they are well characterized and are routinely sampled and monitored. Results from these monitoring points are included in the EDE calculations for the MEOSI and the collective population. A comparison of dose proportions attributable to specific waterborne radionuclides is shown on the pie chart on Figure 3-4. As presented, strontium-90 and cesium-137 account for almost all of the estimated waterborne dose, at 65.7% and 31.5%, respectively.

There were no unplanned releases of waterborne radioactivity in 2014.

Maximum Dose (Waterborne) to an Off-Site Individual.

Based on the radioactivity in liquid effluents discharged from the WVDP (lagoon 3 and the WWTF) during 2014, an off-site individual could have received a maximum EDE of 0.0090 rem (0.000090 mSv). (See Table 3-2.) About 87% of this dose was from cesium-137.

TABLE 3-2
Summary of Annual Effective Dose Equivalents (EDEs) to an Individual and Population From WVDP Releases in 2014

<table>
<thead>
<tr>
<th>Exposure Pathways</th>
<th>Annual EDE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical Receptor/MEOSI a</td>
</tr>
<tr>
<td></td>
<td>mrem (mSv)</td>
</tr>
<tr>
<td>Airborne Releases<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Total Airborne Dose (measured at the ambient air ring)</td>
<td><5.2E-01 (<5.2E-03)</td>
</tr>
<tr>
<td>Waterborne Releases<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>Effluents only (001 + 007)</td>
<td>9.0E-03 (9.0E-05)</td>
</tr>
<tr>
<td>North plateau drainage (SWAMP+74A)</td>
<td>1.8E-02 (1.8E-04)</td>
</tr>
<tr>
<td>Total Waterborne Dose</td>
<td>2.7E-02 (2.7E-04)</td>
</tr>
<tr>
<td>Total From All Pathways</td>
<td><5.5E-01 (<5.5E-03)</td>
</tr>
<tr>
<td>Estimated Airborne Radon-220<sup>e</sup></td>
<td>9.4E-02 (9.4E-04)</td>
</tr>
<tr>
<td>Dose from Natural Background Radiation</td>
<td>310 mrem</td>
</tr>
</tbody>
</table>

Note: Summed values may not exactly match totals due to rounding.

^a The critical receptor applies to the airborne dose. The MEOSI applies to the waterborne dose.

^b A population of 1.62 million is estimated to reside in the U.S. and Canada within 50 mi (80 km) of the site.

^c Releases are from atmospheric nonradon point and diffuse sources.

^d Dose calculated according to “Manual for Radiological Assessment of Environmental Releases at the WVDP” (CHBWV, 2012).

^e Estimated radon activity based on indicator measurements and process knowledge; dose calculated using CAP88 for the MPPB stack.

^f The estimated dose from radon-220 is specifically excluded by rule from NESHAP totals.
The MEOSI EDE due to drainage from the north plateau was 0.018 mrem (0.00018 mSv). About 95% of the north plateau dose was attributable to strontium-90, largely from the WNSWAMP drainage point.

The combined EDE to the MEOSI from liquid effluents and drainage was 0.027 mrem (0.00027 mSv). This annual dose is very small in comparison to the 310-mrem (3.10 mSv) dose that is received by an average member of the U.S. population from natural background radiation.

Collective Population Dose (Waterborne). As a result of radioactivity released in liquid effluents from the WVDP during 2014, the population living within 50 mi (80 km) of the site received an estimated collective EDE of 0.0089 person-rem (0.000089 person-Sv). The collective dose to the population from the effluents plus the north plateau drainage was 0.11 person-rem (0.0011 person-Sv). The resulting average EDE per individual is 0.000082 mrem (0.00000082 mSv), which is a very small percentage of the dose received by the average person from natural background radiation (310 mrem or 3.1 mSv).

Predicted Dose From All Pathways

The potential dose to the public from both airborne and liquid effluents released from the Project in 2014 is the sum of the individual dose contributions. (See Table 3-2.) The calculated maximum EDE from all pathways to a nearby resident was <0.55 mrem (<0.0055 mSv). This dose is <0.55% of the 100-mrem (1-mSv) annual limit in DOE Order 458.1. As in past years, CY 2014 results continued to demonstrate WVDP compliance with applicable radiation standards for protection of the public and the environment.

Table 3-3 presents the total curies released to air and water from all sources at the WVDP computed from measured air concentrations at the on-site stacks and from estimated diffuse sources, and measured water concentrations from surface water discharges and natural drainage. Table 3-3 shows that in 2014 the total curies released to surface water was greater than the total curies released to the air.

Historically, the largest portion of the total dose has been estimated to be due to waterborne contributions. Numerically, the dose estimated from the airborne pathway is larger than the estimated dose from the water pathway in 2014. However, the dose via the airborne pathway is an upper limit of the potential dose, since no radioisotopic activity was detected at the off-site ambient air samplers in 2014. The dose via the waterborne pathway was modeled mathematically using dose conversion factors, which can result in very low dose estimates.

In CY 2014, the total collective EDE to the population within 50 mi (80 km) of the site was <1.9 person-rem (<0.019 person-Sv), with an average EDE of <0.0012 mrem (<0.00012 mSv) per individual.

Radioactivity in the human pathway represented by these data confirms the continued very minor addition to the natural background radiation dose that individuals and the nearby WVDP population receive from Project activities.

Calculated Dose From Food. Radionuclide concentrations in near-site milk and venison samples collected in 2014 were statistically indistinguishable from concentrations in background samples collected in the western NY area (sampling locations shown on Figure A-14).

Conservative dose estimates for 2014 due to consuming near-site deer, fish, milk, beans, corn, and apples were estimated using concentrations measured in samples collected over the past five years to be about 0.061 mrem/year (0.00061 mSv/year), which is about 0.0098% of the dose received by an average individual due to natural and other man-made sources. (See Figure 3-1, “Comparison of Doses from Natural and Man-Made Sources to the
TABLE 3-3
WVDP Radiological Dose and Release Summary

<table>
<thead>
<tr>
<th>Critical Receptor / MEOSI</th>
<th>Total Annual Dose for Calendar Year CY 2014</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential Dose to the Maximally Exposed Off-site Individual (from WVDP Sources)</td>
<td>% of DOE 100-mrem Limit</td>
<td>Population Within 50 Miles<sup>a</sup> of the WVDP (2010 census)</td>
</tr>
<tr>
<td><0.55 mrem (<0.0055 mSv)</td>
<td><0.55%</td>
<td>1,622,050</td>
</tr>
</tbody>
</table>

WVDP Radiological Atmospheric Emissions^b CY 2014 in Curies and Becquerels

<table>
<thead>
<tr>
<th>Component</th>
<th>Tritium</th>
<th>Kr-85</th>
<th>Noble Gases<sup>c</sup></th>
<th>Fission and Activation Products<sup>d</sup> (T<sub>1/2</sub>>3 hr)</th>
<th>Total Radioiodine</th>
<th>Total Radiostrontium</th>
<th>Total Uranium<sup>e</sup></th>
<th>Total Plutonium</th>
<th>Other Actinides</th>
<th>Other (Rn-220)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>4.89E-03</td>
<td>NA</td>
<td>NA</td>
<td>7.38E-05 (2.73E+06)</td>
<td>2.86E-05 (1.06E+06)</td>
<td>2.98E-06 (1.10E+05)</td>
<td>1.52E-07 (5.63E+03)</td>
<td>2.29E-07 (8.46E+03)</td>
<td>2.13E-07 (7.87E+03)</td>
<td>1.10E+03 (4.05E+13)</td>
</tr>
</tbody>
</table>

WVDP Liquid Effluent Releases^d of Radionuclide Material - CY 2014 in Curies and Becquerels

<table>
<thead>
<tr>
<th>Component</th>
<th>Tritium</th>
<th>Fission and Activation Products<sup>d</sup> (T<sub>1/2</sub>>3 hr)</th>
<th>Total Radioiodine</th>
<th>Total Radiostrontium</th>
<th>Total Uranium<sup>e</sup></th>
<th>Total Plutonium</th>
<th>Total Other Actinides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>2.08E-02 (7.69E+08)</td>
<td>3.78E-03 (1.40E+08)</td>
<td>7.15E-05 (2.64E+06)</td>
<td>1.17E-01 (4.32E+09)</td>
<td>3.70E-04 (1.37E+07)</td>
<td>7.13E-06 (2.64E+05)</td>
<td>5.53E-06 (2.05E+05)</td>
</tr>
</tbody>
</table>

Note: There are no known significant discharges of radioactive constituents from the site other than those reported in this table.

^a Total population includes the U.S. population from the 2010 census plus the Canadian population residing within a 50-mi (80-km) radius (Statistics Canada, 2011).

^b Air releases are from point and diffuse sources.

^c Total uranium (airborne) (g) = 1.15E-01, includes uranium contribution from glass fiber filter matrix.

^d Water releases are from both controlled liquid effluent releases and from well-characterized site drainages.

^e Total uranium (waterborne) (g) = 2.80E+02.
Dose from 2014 WVDP Effluents.” This estimate assumes the individual consumes the maximum quantities of each food item. These independent estimates confirmed the low modeled doses based on air and water effluents, as summarized in Table 3-2.

Risk Assessment

Estimates of cancer risk from ionizing radiation have been presented by the NCRP (1987) and the National Research Council’s Committee on Biological Effects of Ionizing Radiation (1990).

The NCRP estimates that the probability of fatal cancer occurring from exposure to radioactivity is between one and five cancer cases per 10,000 people who are each exposed to one rem (i.e., a risk coefficient of between 0.0001 and 0.0005). The Interagency Steering Committee on Radiation Standards suggests the probability might be slightly higher, or six per 10,000 people (January 2003) and DOE guidance also recommends using a risk factor of 0.0006.

The estimated risk to the hypothetical individual residing near the WVDP from airborne and waterborne releases can be calculated by multiplying the predicted dose to the critical receptor/MEOSI from all pathways (<0.55 mrem or <0.00055 rem in 2014) with the probability of cancer risk (0.00006). In 2014, this risk computes to approximately 33 per 100 million (a risk of 0.00000033). This risk is well below the range of 0.000001 to 0.00001 per year considered by the ICRP to be a reasonable risk for any member of the public (ICRP Report Number 26, 1977).

Release of Materials Containing Residual Radioactivity

In addition to discharges to the environment, the release of property containing residual radioactive materials is considered a potential contributor to dose received by the public, as set forth in DOE Order 458.1.

In 2000, the Secretary of Energy placed a moratorium on the release of volumetrically contaminated metals, and suspended the unrestricted release of metals from radiological areas of DOE facilities for recycling. However, the DOE is currently re-evaluating these policies. In December 2012, DOE announced the availability for public review and comment of the draft “Programmatic Environmental Assessment (PEA) for the Recycling of Scrap Metals Originating from Radiological Areas.” No decision has been made based on this re-evaluation to date. Consequently, the moratorium and suspension currently remain in effect.

Presently there are no approved criteria for releasing WVDP material to the public that may have been radiologically contaminated in depth or volume; therefore, no unrestricted release of potentially radiologically contaminated scrap metal or other material of this type has occurred. Compliance with the Secretary of Energy’s suspension of unrestricted release of scrap metal for recycle continues at the WVDP.

In late 2014, the WVDP began planning for non-radiologically contaminated scrap metals recycling for metals that have never been stored in a radiological area. Recycling of non-radiologically contaminated scrap metals was made possible by improved record-keeping practices.

The DOE encourages efforts to promote reuse and recycling of excess property for use within the DOE complex. These transfers occur only when property is transferred to individuals authorized to use such material. A graded approach is utilized by the WVDP for the release of equipment and materials to the public for unrestricted use. This approach considers the historical material use, the potential for internal contamination, the location the material was used, and process knowledge of the item(s) to be released. In accordance with WVDP radiological controls manuals and procedures, these criteria are assessed and documented, and the material(s) may be radiologically surveyed to verify the survey results comply with the contamination limits presented for Release and Clearance of Property in DOE Order 458.1. Records of released property are maintained.

Dose to Biota

Radionuclides from both natural and man-made sources may be found in environmental media such as water, sediments, and soils. In the past, it has been assumed that if radiological controls are sufficient to protect humans, other living things are also likely to be sufficiently protected. This assumption is no longer considered adequate, because plant and animal populations residing in or near these media or taking food or water from these media may be exposed to a greater extent than are humans. Therefore, DOE prepared a technical standard that provides methods and guidance to be used to evaluate doses of ionizing radiation to populations of aquatic animals, riparian animals, terrestrial plants, and terrestrial animals. The potential exposure pathways to various biota are shown in Figure 3-5.
Methods in this technical standard, “A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota” (DOE-STD-1153-2002, July 2002), were used in 2014 to evaluate radiation doses to aquatic and terrestrial biota within the confines of the WNYNSC, which includes the WVDP. Doses were assessed for compliance with the limit in DOE Order 458.1 for native aquatic animal organisms (1 rad/day) and for compliance with the thresholds for terrestrial plants (also 1 rad/day) and for terrestrial animals (0.1 rad/day), as proposed in DOE-STD-1153-2002. Note that the absorbed dose unit (rad) is used for biota instead of the units used for indicating human risk (rem).

RESRAD-BIOTA for Windows® (November 2009), a calculation tool provided by DOE for implementing the technical standard, was used to compare existing radionuclide concentration data from environmental sampling with biota concentration guide (BCG) screening values and to estimate upper bounding doses to biota. Data were taken from surface water samples obtained in 2014 and sediments over the most recent five years of sediment sampling (2004–2007 and 2012). Soil data from the most recent 10 years (1995–2004) for which special on-site surface soil sampling was conducted and the most recent 10 years of routine on-site surface soil sampling (1999–2007 and 2012) were used. Differing time periods were used because radionuclide concentrations change more rapidly over time in surface waters than in sediments and soils, as reflected in their sampling frequencies (monthly or quarterly for water, every five years for sediment and surface soil). Concentration data for radionuclides in each medium were entered into the RESRAD-BIOTA Code. The value for each radionuclide was automatically divided by its corresponding BCG to calculate a partial fraction for each nuclide in each medium. Partial fractions for each medium were added to produce a sum of fractions.

Exposures from the aquatic pathway may be assumed to be less than the aquatic dose limit from DOE Order 458.1 if the sum of fractions for the water medium plus that for the sediment medium is less than 1.0. Similarly, exposures from the terrestrial pathway may be assumed to be less than the proposed dose limits for both terrestrial plants and animals if the sum of fractions for the water medium plus that for the soil medium is less than 1.0.

It was found that the isotopes with the highest sums of fractions, the radionuclides that contributed the largest

FIGURE 3-5 Pathways Considered in the RESRAD Family of Codes

Reference: DOE-HDBK-1216-2015
component of both aquatic and terrestrial dose to biota were strontium-90 and cesium-137. Per guidance in DOE-STD-1153-2002, the populations of organisms most sensitive to strontium-90 and cesium-137 in this evaluation; i.e., those most likely to be adversely affected via the aquatic and terrestrial pathways, were determined to be populations of riparian animals (such as the raccoon [aquatic dose]) and terrestrial animals (such as the deer mouse [terrestrial dose]). Populations of both animals are found on the WNYNSC.

In accordance with the graded approach described in DOE-STD-1153-2002, a general screening was first conducted using the maximum radionuclide concentrations from surface waters, sediments, and soils. Maximum radionuclide concentrations exceeded applicable BCG limits for both aquatic and terrestrial evaluations.

As recommended in DOE-STD-1153-2002, a site-specific screening was then done using estimates of average radionuclide concentrations derived from measurements in site-wide surface waters, sediments, and soils. Results are summarized in Table 3-4.

At the site-specific screening level, the sums of fractions for the aquatic and terrestrial evaluations were 0.19 and 0.45, respectively. The sum of fractions for each assessment was less than 1.0, indicating that applicable BCGs were met for both the aquatic and terrestrial evaluations.

Upper bounding doses associated with the aquatic system evaluation were 0.0058 rad/day to an aquatic animal and 0.019 rad/day to a riparian animal, far below the 1 rad/day standard from DOE Order 458.1 for dose to a native aquatic animal. Upper bounding doses associated with the terrestrial system evaluation were 0.0036 rad/day to a terrestrial plant and 0.045 rad/day to a terrestrial animal, again well below the guidance thresholds (0.1 and 1 rad/day, respectively).

TABLE 3-4
2014 Evaluation of Dose to Aquatic and Terrestrial Biota

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Water BCG(^a) (pCi/L)</th>
<th>Mean Water Value (pCi/L)</th>
<th>Ratio</th>
<th>Sediment BCG(^a) (pCi/g)</th>
<th>Mean Sediment Value (pCi/g)</th>
<th>Ratio</th>
<th>Water and Sediment Sum of Fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-137</td>
<td>42.7</td>
<td>3.38</td>
<td>7.91E-02</td>
<td>3,130</td>
<td>5.49</td>
<td>1.76E-03</td>
<td>0.081</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>279</td>
<td>25.6</td>
<td>9.19E-02</td>
<td>583</td>
<td>11.7</td>
<td>2.01E-02</td>
<td>0.11</td>
</tr>
<tr>
<td>All Others</td>
<td>NA</td>
<td>NA</td>
<td>1.69E-04</td>
<td>NA</td>
<td>NA</td>
<td>4.72E-04</td>
<td>0.00064</td>
</tr>
<tr>
<td>Sum of Fractions</td>
<td></td>
<td></td>
<td>1.71E-01</td>
<td></td>
<td>2.23E-02</td>
<td>0.19</td>
<td></td>
</tr>
</tbody>
</table>

Estimated upper bounding dose to an aquatic animal = 0.0058 rad/day; to a riparian animal = 0.019 rad/day.

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Water BCG(^a) (pCi/L)</th>
<th>Mean Water Value (pCi/L)</th>
<th>Ratio</th>
<th>Soil BCG(^a) (pCi/g)</th>
<th>Mean Soil Value (pCi/g)</th>
<th>Ratio</th>
<th>Water and Soil Sum of Fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-137</td>
<td>599,000</td>
<td>3.38</td>
<td>5.63E-06</td>
<td>20.8</td>
<td>4.57</td>
<td>2.20E-01</td>
<td>0.22</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>54,500</td>
<td>25.6</td>
<td>4.70E-04</td>
<td>22.5</td>
<td>5.16</td>
<td>2.30E-01</td>
<td>0.23</td>
</tr>
<tr>
<td>All Others</td>
<td>NA</td>
<td>NA</td>
<td>1.44E-06</td>
<td>NA</td>
<td>NA</td>
<td>8.15E-04</td>
<td>0.00082</td>
</tr>
<tr>
<td>Sum of Fractions</td>
<td></td>
<td></td>
<td>4.77E-04</td>
<td></td>
<td>4.51E-01</td>
<td>0.45</td>
<td></td>
</tr>
</tbody>
</table>

Estimated upper bounding dose to a terrestrial plant = 0.0036 rad/day; to a terrestrial animal = 0.045 rad/day.

NA - Not applicable

\(^a\) The biota concentration guides (BCGs) are calculated values. Except for the sums of fractions and dose estimates, which are rounded to two significant digits, all values are expressed to three significant digits.
It was therefore concluded that populations of aquatic and terrestrial biota (both plants and animals) on the WNYNSC are not being exposed to doses in excess of the existing DOE dose standard for native aquatic animals (DOE, February 1990) and the international standards for terrestrial organisms (International Atomic Energy Agency [IAEA], 1992).

Summary

Tables 3-2, 3-3, and 3-4 summarize radiological dose and release information for CY 2014.

Predictive computer modeling of waterborne releases and measurements of radioactivity at near-site ambient air monitors resulted in estimated hypothetical doses to the maximally exposed individual that were orders of magnitude below all applicable EPA standards and DOE orders that place limitations on the release of radioactive materials and dose to individual members of the public. The collective population dose was also assessed and found to be orders of magnitude below the natural background radiation dose. Additionally, estimates indicated that populations of biota at the WVDP are exposed at a fraction of DOE and IAEA guidelines for dose to biota.

Based on the overall dose assessment, the WVDP was found to be in compliance with applicable effluent radiological guidelines and standards during CY 2014.
GROUNDWATER PROTECTION PROGRAM

Groundwater Monitoring Program (GMP)

The GMP at the WVDP has been designed to comply with all applicable state and federal regulations and to meet the requirements of DOE Order 458.1, “Radiation Protection of the Public and the Environment,” (including Change 3, January 15, 2013) and the RCRA §3008(h) Administrative Order on Consent.

DOE Order 458.1, Section 4.i.2, states that “Groundwater must be protected from radiological contamination to ensure compliance with dose limits in the Order and consistent with ALARA process requirements. To this end, DOE must ensure that: baseline conditions of the groundwater quantity and quality are documented; possible sources of, and potential for, radiological contamination are identified and assessed; strategies to control radiological contamination are documented and implemented; monitoring methodologies are documented and implemented; and groundwater monitoring activities are integrated with other environmental monitoring activities.” The “WVDP Groundwater Protection Management Program Plan” documents the Project’s approach for groundwater protection from site activities.

Compliance with the Consent Order and the conclusions in the RFI reports require routine monitoring of certain analytes at specified groundwater monitoring locations. (See the “RCRA §3008(h) Administrative Order on Consent” and the “RFI” section of the ECS.)

The primary objectives of the groundwater monitoring plan are to identify, delineate, and monitor groundwater migration pathways that could transport contaminants off site and to support mitigative actions. To accomplish these goals, the GMP describes a groundwater monitoring well network designed to monitor groundwater conditions in subsurface geologic units that represent potential routes of contaminant migration. For a description of these geologic units refer to “Geology and Hydrogeology” later in this chapter.

Groundwater Use and History. Site groundwater in shallow, unconsolidated geologic units is not used for drinking or operational purposes, nor is WVDP effluent discharged directly to groundwater. In 2014 the site installed two Health Department approved potable water supply wells into bedrock to depths greater than 100 feet beneath the ground surface. Chemical and radiological sampling of these wells was performed as part of the installation and development process. Sampling continues as part of ongoing system operation. These wells are upgraded of site facilities and areas of contamination. Drinking water quality samples are routinely collected with results provided to the Cattaraugus County Health Department. The majority of site groundwater eventually flows to Cattaraugus Creek and then to Lake Erie. Surveys have determined that no community public water supplies are drawn from groundwater downgradient of the site or from Cattaraugus Creek downstream of the WVDP. However, upgradient of the site, groundwater is used as a public and private drinking water supply by local residents.

Highlights of the site groundwater monitoring history and the evolution of the GMP are summarized in Table 4-1. Groundwater monitoring to evaluate the performance of the full-scale PTW installed in November 2010 on the north plateau is discussed later in this chapter.

Geology and Hydrogeology

The WNYNSC is situated upon a layered sequence of glacial-age sediments that fill a steep-sided bedrock valley composed of interbedded shales and siltstones (Rickard, 1975). (See Figure 4-1.) Erdman Brook bisects the WVDP into the north and south plateaus. The MPPB, WTF, and lagoons are located on the north plateau. The drum cell, NDA, and SDA are located on the south plateau.

The glacial sediments overlying the bedrock consist of a sequence of three silt- and clay-rich glacial tills of Lavery, Kent, and possibly Olean age. The tills are separated by stratified fluvio-lacustrine deposits (silty or silty/sandy lakebed sediments). The glacial sediments above the Kent till, which include the Kent recessional sequence, the weathered Lavery till (WLT) and unweathered Lavery till, the intra-Lavery till-sand, and the alluvial sand and gravel (S&G) unit, are generally regarded as the predominant routes for contaminant migration from the Project via groundwater.
Table 4-1

Highlights of Groundwater Monitoring History at the WVDP and the WNYNSC

<table>
<thead>
<tr>
<th>Year</th>
<th>Highlight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961–1980</td>
<td>From the time the WNYNSC was established in 1961, to passage of the WVDP Act in 1980, groundwater at the WVDP was periodically sampled by NFS, the New York State Geological Survey, and the United States Geological Survey during construction of the MPPB, for spill investigations, and for post-NFS research studies.</td>
</tr>
<tr>
<td>1982</td>
<td>Groundwater monitoring at the WVDP began in 1982 under DOE and the site subcontractor, WVNS.</td>
</tr>
<tr>
<td>1984</td>
<td>By 1984, 40 wells provided groundwater monitoring coverage near the MPPB and the NDA.</td>
</tr>
<tr>
<td>1986</td>
<td>Additional wells were installed to supplement the existing groundwater monitoring network.</td>
</tr>
<tr>
<td>1990–1991</td>
<td>Ninety-six wells were installed upgradient and downgradient of the WVDP SWMUs for DOE and RCRA monitoring programs. (The total included wells at the SDA area).</td>
</tr>
<tr>
<td>1992</td>
<td>The RCRA 3008(h) Order on Consent was signed.</td>
</tr>
<tr>
<td>1993</td>
<td>Elevated gross beta activity was discovered in groundwater from the sand and gravel (S&G) unit on the north plateau. Subsequent investigation delineated a plume of strontium-90-contaminated groundwater originating beneath the MPPB, extending northeast.</td>
</tr>
<tr>
<td>1993–1994</td>
<td>An RFI expanded characterization program was conducted to assess potential releases of hazardous constituents from on-site SWMUs. Results from the RFI influenced decisionmaking for the groundwater monitoring program (GMP).</td>
</tr>
<tr>
<td>1994</td>
<td>A Geoprobe® investigation of groundwater and soil beneath and downgradient of the MPPB was performed to characterize the elevated gross beta activity in the S&G unit. The presumed source was found to be near the southwest corner of the MPPB. The primary isotopes responsible for the beta activity were strontium-90 and its daughter product yttrium-90.</td>
</tr>
<tr>
<td>1995</td>
<td>The GMP was evaluated and analytical constituents were tailored to each sampling point for a more focused and cost-effective program. The NPGRS was installed near the leading edge of the main lobe of the strontium-90 plume to minimize migration, which consisted of three extraction wells to recover groundwater for treatment by ion exchange.</td>
</tr>
<tr>
<td>1996</td>
<td>Several groundwater seeps on the northeast edge of the north plateau were added to the monitoring program.</td>
</tr>
<tr>
<td>1997</td>
<td>A Geoprobe® soil and groundwater sampling program was conducted to delineate the leading edge of the strontium-90 plume.</td>
</tr>
<tr>
<td>1998</td>
<td>In response to recommendations from a 1997 external review of WVDP actions regarding the north plateau, another Geoprobe® soil and groundwater sampling program was carried out to further characterize the core area of the plume. The new radiological data were compared to the 1994 data.</td>
</tr>
<tr>
<td>1999</td>
<td>A pilot-scale PTW was installed in the eastern lobe of the plume to test this passive in-situ remediation technology. Well points were installed near the pilot-scale PTW.</td>
</tr>
<tr>
<td>2000–2001</td>
<td>Additional wells and well points were installed across the leading edge of the strontium-90 plume to monitor the plume's movement and assess the effectiveness of the pilot PTW.</td>
</tr>
<tr>
<td>2003</td>
<td>Four new wells were installed to monitor groundwater upgradient and downgradient of the newly constructed RHWF.</td>
</tr>
<tr>
<td>2005</td>
<td>Number of analytes or sampling frequencies were reduced at 14 groundwater monitoring wells.</td>
</tr>
<tr>
<td>2007</td>
<td>The GMP was evaluated, considering current site conditions, activities, and environmental exposure pathways. The analytes and sampling frequencies at 20 monitoring points were reduced and sampling at four wells was discontinued. Off-site drinking water sampling was also discontinued after an evaluation of historical data had confirmed that site operations had no impact on off-site downgradient groundwater.</td>
</tr>
<tr>
<td>2008</td>
<td>Two replacement wells, and 21 piezometers, were installed near the NDA during installation of a slurry wall and geomembrane cover at the NDA. On the north plateau, three subsurface investigations were performed upgradient, within, and downgradient of the strontium-90 plume.</td>
</tr>
<tr>
<td>2010</td>
<td>An approximately 860-ft-long full-scale PTW was installed along the leading edges of the strontium-90 plume. Sixty-six groundwater monitoring wells were installed upgradient, downgradient, and within the PTW to monitor wall performance. Four new wells were installed downgradient of the MPPB to supplement the strontium-90 source area monitoring.</td>
</tr>
<tr>
<td>2011–2014</td>
<td>Groundwater monitoring continued from CY 2011 through 2014 per the GMP, the “North Plateau Groundwater Monitoring Plan,” and the “North Plateau PTW Performance Monitoring Plan.” There were no changes to the monitoring programs, no new groundwater monitoring wells were installed, and no active monitoring wells were decommissioned from 2011 through 2014.</td>
</tr>
</tbody>
</table>
FIGURE 4-1
Geologic Cross Sections of the North and South Plateaus at the WVDP
The Kent till has a relatively low permeability and does not provide a pathway for contaminant movement from the WVDP; therefore, it is not discussed here. The S&G unit consists of two subunits: the thick-bedded unit and the slackwater sequence. It only exists on the Project’s north plateau. See Table 4-2 for the descriptions and the geographic distribution of these units.

Routine Groundwater Monitoring

Groundwater Monitoring Network. The WVDP groundwater monitoring network is a vital component to meet requirements of DOE Order 458.1. Groundwater is routinely monitored across the north and south plateaus and in the six geologic units described in Table 4-2. In CY 2014, groundwater samples were collected from 69 on-site, routine groundwater monitoring locations, including 63 monitoring wells and well points, five groundwater seepage points, and one trench sump (see Figures A-9 and A-10). Many of the wells monitor one or more of the SWMUs or SSWMUs per the Consent Order. Table 4-3 lists the monitoring locations in the routine groundwater monitoring network, the geologic units monitored, and the analytes measured in CY 2014. Table 4-4 identifies the analytical parameters defined in each analyte group.

The monitoring frequency and the constituents analyzed under the groundwater monitoring plan are a function of regulatory requirements, historical site activities, current operating practices, and ongoing groundwater data evaluations. Tables 4-5 and 4-6 provide an overview of groundwater monitoring performed during CY 2014, organized by geographic area and monitoring purpose.

Supplemental groundwater monitoring is also performed for evaluation of the PTW and the north plateau strontium-90 groundwater plume discussed later in this chapter.

Groundwater Elevation Monitoring. Groundwater elevations are measured at the monitoring network wells in conjunction with the quarterly analytical sampling. (See Figures A-9 and A-10 in Appendix A.) These data are used to produce maps depicting groundwater flow directions and gradients. Long-term trend graphs are used to illustrate variations in groundwater elevations over time, including seasonal fluctuations or changes resulting from installing water diversions, such as geomembrane covers, trenches, or slurry walls, and groundwater treatment systems (e.g., the North Plateau Groundwater Recovery System [NPGRS] and the full-scale PTW).

Groundwater elevation mapping of the WLT on the south plateau helps evaluate the effectiveness of the NDA interceptor trench, the slurry wall, and geomembrane cover. (See “Groundwater Sampling Observations on the South Plateau including the NRC-Licensed Disposal Area [NDA]”).

Groundwater Trigger Level Evaluation. A computerized data-screening program uses “trigger levels,” preset conservative values for chemical and radiological concentrations and groundwater elevation measurements, to promptly identify anomalies in monitoring results that may require further investigation. The trigger levels are statistically derived from historical results, are based on regulatory criteria, or are based on analytical detection limits.

Trigger level exceptions, defined as measurements above an upper trigger level or below a lower trigger level, may be the result of normal seasonal fluctuations, laboratory analytical problems, or changes in groundwater quality. Response actions are identified for each analytical result exceeding a trigger level. After each sampling event, the current trigger level exceptions are compiled, evaluated, and summarized with recommended response actions. RCRA trigger level exceptions are reported to NYSDEC.

Groundwater trigger levels for selected chemical and radiological constituents were recalculated in August 2012, incorporating data collected through December 2011. Trigger levels in areas that have seen a process change were calculated only on data that was collected after the change occurred. A process change may affect the analytical results collected from a monitoring location by altering the underlying physical conditions that are monitored at that sampling point. The upgradient NDA slurry wall and geomembrane cover installed in 2008 is an example of a process change that significantly altered the hydrogeologic conditions at monitoring points located on and downgradient of the NDA. The geomembrane cover and slurry wall have decreased water infiltration and migration into the NDA, which changes water levels in and downgradient of the NDA.

Groundwater Screening Levels (GSLs). In 2009, GSLs were developed during the CMS preparations as a tool to identify the presence of chemical and radiological constituents in groundwater above levels of concern (e.g., regulatory limits, guidance limits, or background). Methods used to develop the GSLs are discussed in detail in Appendix D. Table 4-9 shows groundwater sampling results for 2014 compared with applicable GSLs and background levels.
Table 4-2

Summary of Hydrogeology at the WVDP

<table>
<thead>
<tr>
<th>Geologic Unit</th>
<th>Description</th>
<th>Groundwater Flow Characteristics</th>
<th>Hydraulic Conductivity a</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&G; Thick-Bedded Unit (TBU)</td>
<td>Silty sand and gravel layer composed of younger Holocene alluvial deposits</td>
<td>Flow is generally northeast across the plateau toward Franks Creek, with groundwater near the northwestern and southeastern margins flowing radially outward toward Quarry Creek and Erdman Brook.</td>
<td>9 ft/day (3.2E-03 centimeters [cm]/second [sec])</td>
<td>Surficial unit on the north plateau</td>
</tr>
<tr>
<td>S&G; Slackwater Sequence (SWS)</td>
<td>Interbedded silty sand and gravel layers composed of Pleistocene-age glaciofluvial deposits partially separated from the S&G-TBU by a discontinuous silty clay interval</td>
<td>Flow is to the northeast along gravel layers toward Franks Creek.</td>
<td>17 ft/day (5.9E-03 cm/sec)</td>
<td>Underlies a portion of the north plateau</td>
</tr>
<tr>
<td>Weathered Lavery Till</td>
<td>Upper zone of the Lavery till which has been exposed at the ground surface; weathered and fractured to a depth of 3–16 ft (0.9–4.9 m); brown in color due to oxidation; contains numerous desiccation cracks and root tubes</td>
<td>Flow has both horizontal and vertical components allowing groundwater to move laterally across the south plateau before moving downward into the unweathered lavery till or discharging to nearby incised stream channels.</td>
<td>0.07 ft/day (2.4E-05 cm/sec); the highest conductivities are associated with dense fracture zones found within the upper 7 ft (2 m) of the unit</td>
<td>Surficial unit on the south plateau</td>
</tr>
<tr>
<td>Unweathered Lavery Till</td>
<td>Olive gray silty clay with intermittent lenses of silt and sand; ranges up to 130 ft (40 m) in thickness</td>
<td>Flow is vertically downward at a relatively slow rate; unit is considered an aquitard.</td>
<td>0.002 ft/day (8.1E-07 cm/sec)</td>
<td>Underlies both the north and south plateaus</td>
</tr>
<tr>
<td>Lavery Till Sand</td>
<td>Thin, sandy unit of limited areal extent and variable thickness within the Lavery till</td>
<td>Flow is to the east-southeast toward Erdman Brook.</td>
<td>0.2 ft/day (8.6E-05 cm/sec)</td>
<td>Primarily beneath the southeastern portion of the north plateau</td>
</tr>
<tr>
<td>Kent Recessional Sequence</td>
<td>Interbedded clay and silty clay layers locally overlain by coarser-grained sands and gravels; pinches out near the east side of Rock Springs Road</td>
<td>Flow is to the northeast; recharge from the overlying till and from bedrock to the southwest; discharges into Buttermilk Creek.</td>
<td>0.01 ft/day (4.3E-06 cm/sec)</td>
<td>Underlies most of the Project, except areas adjacent to Rock Springs Road</td>
</tr>
</tbody>
</table>

Note: Hydrologic conditions of the site are more fully described in "Environmental Information Document, Volume III: Hydrology, Part 4" (West Valley Nuclear Services Co. [WVNSCO], March 1996) and in the "RCRA Facility Investigation Report (RFI) Vol. 1: Introduction and General Site Overview" (WVNSCO and Dames & Moore, July 1997).

a Hydraulic conductivities represent an average of testing results from 1991 through 2012.
TABLE 4-3

WVDP Groundwater Monitoring Network Sorted by Geologic Unit

<table>
<thead>
<tr>
<th>Well ID</th>
<th>SSWMU</th>
<th>Gradient Position</th>
<th>Analyte Group (See Table 4-4)</th>
<th>Well ID</th>
<th>SSWMU</th>
<th>Gradient Position</th>
<th>Analyte Group (See Table 4-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand and Gravel Wells</td>
<td></td>
<td></td>
<td></td>
<td>Weathered Lavery Till Wells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103°</td>
<td>1, 3</td>
<td>D</td>
<td>I, RI, V</td>
<td>803°</td>
<td>8</td>
<td>D</td>
<td>I, RI, SV, V</td>
</tr>
<tr>
<td>104</td>
<td>1</td>
<td>C</td>
<td>I, RI</td>
<td>804°</td>
<td>8</td>
<td>D</td>
<td>I, RI, V</td>
</tr>
<tr>
<td>105</td>
<td>1</td>
<td>C</td>
<td>I, RI</td>
<td>1302°</td>
<td>NA</td>
<td>U</td>
<td>I, RI, M,</td>
</tr>
<tr>
<td>106</td>
<td>1</td>
<td>D</td>
<td>I, RI</td>
<td>1304°</td>
<td>NA</td>
<td>D</td>
<td>I, RI, M, R</td>
</tr>
<tr>
<td>111°</td>
<td>1</td>
<td>D</td>
<td>I, RI, M, SV, V</td>
<td>8603</td>
<td>8</td>
<td>U</td>
<td>I, RI</td>
</tr>
<tr>
<td>116°</td>
<td>1, 8</td>
<td>C, U</td>
<td>I, RI, V</td>
<td>8604</td>
<td>1</td>
<td>C</td>
<td>I, RI</td>
</tr>
<tr>
<td>205</td>
<td>2</td>
<td>D</td>
<td>I, RI</td>
<td>8605°</td>
<td>1, 2</td>
<td>D</td>
<td>I, RI, M, SV, V</td>
</tr>
<tr>
<td>301°</td>
<td>3</td>
<td>B, U</td>
<td>I, RI</td>
<td>8607°</td>
<td>4, 6</td>
<td>D, U</td>
<td>I, RI, V</td>
</tr>
<tr>
<td>302</td>
<td>3</td>
<td>U</td>
<td>I, RI</td>
<td>8609°</td>
<td>3, 4, 6</td>
<td>D, D, U</td>
<td>I, RI, S, V</td>
</tr>
<tr>
<td>401°</td>
<td>3, 4</td>
<td>B, U</td>
<td>I, RI, R</td>
<td>8612°</td>
<td>8</td>
<td>D</td>
<td>I, RI, SV, V</td>
</tr>
<tr>
<td>402</td>
<td>4</td>
<td>U</td>
<td>I, RI</td>
<td>MP-01°</td>
<td>3</td>
<td>D</td>
<td>I, RI, M, R-MP, SV, V, T</td>
</tr>
<tr>
<td>403</td>
<td>4</td>
<td>U</td>
<td>I, RI</td>
<td>MP-02°</td>
<td>3</td>
<td>D</td>
<td>I, RI, M, R-MP, SV, V, T</td>
</tr>
<tr>
<td>406°</td>
<td>4, 6</td>
<td>D, U</td>
<td>I, RI, R, V</td>
<td>MP-03°</td>
<td>3</td>
<td>D</td>
<td>I, RI, M, R-MP, SV, V, T</td>
</tr>
<tr>
<td>408°</td>
<td>3, 4</td>
<td>D</td>
<td>I, RI, R, V</td>
<td>MP-04°</td>
<td>3</td>
<td>D</td>
<td>I, RI, M, R-MP, SV, V, T</td>
</tr>
<tr>
<td>501°</td>
<td>5</td>
<td>U</td>
<td>I, RI, S, V</td>
<td>WP-AC°</td>
<td>NA</td>
<td>NA</td>
<td>I, RI</td>
</tr>
<tr>
<td>502°</td>
<td>5</td>
<td>D</td>
<td>I, RI, S, SM, V</td>
<td>WP-C°</td>
<td>NA</td>
<td>NA</td>
<td>I, RI</td>
</tr>
<tr>
<td>602A</td>
<td>6</td>
<td>D</td>
<td>I, RI</td>
<td>WP-H°</td>
<td>NA</td>
<td>NA</td>
<td>I, RI</td>
</tr>
<tr>
<td>604</td>
<td>6</td>
<td>D</td>
<td>I, RI</td>
<td>SP04°</td>
<td>NA</td>
<td>NA</td>
<td>RI</td>
</tr>
<tr>
<td>605</td>
<td>6</td>
<td>D</td>
<td>I, RI</td>
<td>SP06°</td>
<td>NA</td>
<td>NA</td>
<td>RI</td>
</tr>
<tr>
<td>706°</td>
<td>7</td>
<td>B, D</td>
<td>I, RI, M</td>
<td>SP11°</td>
<td>NA</td>
<td>NA</td>
<td>RI</td>
</tr>
<tr>
<td>801°</td>
<td>6, 8</td>
<td>D, U</td>
<td>I, RI, S, V</td>
<td>SP12°</td>
<td>8</td>
<td>D</td>
<td>I, RI, V</td>
</tr>
<tr>
<td>802</td>
<td>8</td>
<td>D</td>
<td>I, RI, V</td>
<td>GSEPLe°</td>
<td>8</td>
<td>C, D</td>
<td>I, RI, V</td>
</tr>
<tr>
<td>Lavery Till Sand Wells</td>
<td></td>
<td></td>
<td></td>
<td>Unweathered Lavery Till Wells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204°</td>
<td>2, 3</td>
<td>D</td>
<td>I, RI</td>
<td>206</td>
<td>2</td>
<td>C</td>
<td>I, RI</td>
</tr>
<tr>
<td>906°</td>
<td>9</td>
<td>D</td>
<td>I, RI</td>
<td>1005°</td>
<td>9, 10</td>
<td>C, U</td>
<td>I, RI</td>
</tr>
<tr>
<td>908R°</td>
<td>9</td>
<td>U</td>
<td>I, RI</td>
<td>1006°</td>
<td>9, 10</td>
<td>C, D</td>
<td>I, RI</td>
</tr>
<tr>
<td>909°</td>
<td>9</td>
<td>D</td>
<td>I, RI, M, R, SV, V</td>
<td>1008C°</td>
<td>9, 10</td>
<td>B, U</td>
<td>I, RI</td>
</tr>
<tr>
<td>NDATR°</td>
<td>9</td>
<td>D</td>
<td>I, RI, M, R, SV, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kent Recessional Sequence Wells</td>
<td></td>
<td></td>
<td></td>
<td>Unweathered Lavery Till Wells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>901°</td>
<td>9</td>
<td>U</td>
<td>I, RI</td>
<td>1008B</td>
<td>10</td>
<td>B, U</td>
<td>I, RI</td>
</tr>
<tr>
<td>902°</td>
<td>9</td>
<td>U</td>
<td>I, RI</td>
<td>8610°</td>
<td>9</td>
<td>D</td>
<td>I, RI</td>
</tr>
<tr>
<td>903°</td>
<td>9</td>
<td>D</td>
<td>I, RI</td>
<td>8611°</td>
<td>9</td>
<td>D</td>
<td>I, RI</td>
</tr>
</tbody>
</table>

Gradient Positions: B (background); C (crossgradient); D (downgradient); U (upgradient)

° Monitoring for certain parameters is required by the RCRA §3008(h) Consent Order.

Monitor upgradient and downgradient of the RHWF.

Monitor north and east of the MPPB.

Monitor groundwater emanating from seeps along the edge of the north plateau.
Table 4-5

<table>
<thead>
<tr>
<th>Number of...</th>
<th>Total WVDP</th>
<th>North Plateau</th>
<th>South Plateau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Points Sampled - Analytical</td>
<td>69</td>
<td>55</td>
<td>14</td>
</tr>
<tr>
<td>Monitoring Points - Water Elevations Only</td>
<td>73</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>Monitoring Events</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Analyses (analyses groups)</td>
<td>985</td>
<td>846</td>
<td>139</td>
</tr>
<tr>
<td>Results (individual)</td>
<td>6,996</td>
<td>5,837</td>
<td>1,159</td>
</tr>
<tr>
<td>Percent of Nondetectable Results</td>
<td>84%</td>
<td>83%</td>
<td>85%</td>
</tr>
<tr>
<td>Water Elevation Measurements</td>
<td>544</td>
<td>332</td>
<td>212</td>
</tr>
</tbody>
</table>

a Does not include PTW monitoring.

Table 4-6

<table>
<thead>
<tr>
<th>Number of...</th>
<th>Total</th>
<th>Regulatory/ Waste Management</th>
<th>Environmental Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Points Sampled - Analytical</td>
<td>69</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>Monitoring Points - Water Elevations Only</td>
<td>73</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>Monitoring Events</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Analyses (analyses groups)</td>
<td>985</td>
<td>663</td>
<td>322</td>
</tr>
<tr>
<td>Results (individual)</td>
<td>6,996</td>
<td>6,113</td>
<td>883</td>
</tr>
<tr>
<td>Percent of Nondetectable Results</td>
<td>84%</td>
<td>88%</td>
<td>56%</td>
</tr>
<tr>
<td>Water Elevation Measurements</td>
<td>544</td>
<td>148</td>
<td>396</td>
</tr>
</tbody>
</table>
North Plateau Strontium-90 Plume

Elevated gross beta has been observed on the north plateau since 1993, and is predominantly confined to the S&G unit, the shallowest geologic unit on the north plateau. (See the highlights for 1993 and 1994 in Table 4-1.) The routine groundwater monitoring plan network for the S&G unit on the north plateau includes 36 monitoring wells, three well points, and five groundwater seepage locations.

In April 2011, DOE issued a new technical standard (DOE-STD-1196-2011) that established a revised set of radiological concentration standards for radiological environmental protection programs at DOE facilities and sites. These DCs were used to evaluate groundwater data collected in 2014. Because there is no DC for gross beta in liquid effluents, the strontium-90 DCs (1.1E-06 µCi/mL) is used as a conservative basis for comparison where beta-emitting radionuclides are detected in groundwater. Historical monitoring has established that strontium-90 is the most predominant beta emitter found in site groundwater. The strontium-90 concentrations would be expected to be about one-half of the gross beta result because the beta includes strontium-90 and its daughter product, yttrium-90. Therefore, monitoring wells are routinely sampled for gross beta concentrations, supported by periodic sample measurement at select wells for strontium-90 analysis. For the purpose of the following discussions, the strontium-90 DCs is used for comparison with both gross beta and strontium-90. (See the “Useful Information” section for a discussion of DOE DCs, and Table UI-4 for a list of the DCs for radionuclides of interest at the WVDP.)

Figure 4-2 shows the extent of the strontium-90 plume as defined by the 1.0E-06 µCi/mL gross beta isopleth, at three time intervals spanning 20 years (1994, 2004, and 2014). As shown, the plume’s western boundary has remained relatively constant since 1994, but the plume’s northern and eastern extents have spread to the northeast and east. The leading edge has divided into three small lobes because of the variable groundwater flow rate across the north plateau, due to the heterogeneous nature of the sediments within the S&G unit. The uneven distribution of coarse and fine soils within the subsurface creates preferential pathways for groundwater flow. The GMP wells that monitor the plume and the measured gross beta concentrations are shown on the figure. Figure 4-2 shows that for 2014 the 1.0E-06 µCi/mL gross beta isopleth in the eastern lobe does not extend beyond the PTW.

Gross beta concentration trends over the last 10 years at monitoring wells located within the plume and near former lagoon 1 are shown on Figures 4-3 through 4-7 and 4-10. These data are plotted on a log scale; therefore, an increase from one gridline to the next represents a 10-fold increase in concentration. The log scale was used so that data from background locations (with concentrations in the 1.0E-09 µCi/mL range) and data from the central plume (with concentrations in the 1.0E-04 µCi/mL range, 100,000 times higher than background) could be plotted on the same graphs.

Figure 4-3 illustrates the gross beta concentrations in groundwater wells located immediately downgradient of the MPPB, the strontium-90 source area, and along the western edge of the plume (at well 8609). Well 408 and the four MPPB wells (MP-01, -02, -03, and -04, installed in CY 2010), located northeast of the MPPB closest to the source area, exhibit the highest gross beta concentrations (up to 6.45E-04 µCi/mL in March 2014, shown in Appendix D-2) of any routinely monitored wells in the GMP. Gross beta concentrations, remained relatively stable in CY 2014 at monitoring well 408. The 2014 gross beta concentration at well 8609 increased slightly throughout the year. At three of the four MPPB wells, directly downgradient of the MPPB, 2014 gross beta concentrations increased in March and then decreased. The 2014 gross beta concentration at well MP-04 increased in March and June and then decreased.

Figure 4-4 illustrates gross beta concentrations in wells 104, 501, 502, and 8604 centrally located within the plume area. Gross beta concentrations in well 501 slightly decreased overall in 2014 compared with 2013. The 2014 gross beta concentrations in wells 104, 502, and 8604 increased compared to 2013 concentrations.

Figure 4-5 illustrates gross beta concentrations at monitoring wells 105, 116, and 8603, upgradient of the PTW. The gross beta concentrations at these wells slightly increased overall in 2014 compared with 2013.

Figure 4-6 illustrates gross beta concentrations at monitoring wells 801, 803, 804, and 8612, downgradient of the PTW. The plume’s leading edge had migrated past the PTW before it was installed in 2010 as indicated by gross beta activity levels observed in downgradient wells prior to PTW installation in November 2010. Gross beta concentrations at well 803 exhibited a slight increase from 2013 to 2014. Gross beta concentrations at wells 801, 804, and 8612 decreased overall from 2013 to 2014. Continued monitoring will determine whether gross beta concentrations continue to decrease over time as more treated groundwater migrates out of the PTW.
FIGURE 4-2

LEGEND
- 2014 Gross Beta Isopleth
- 2004 Gross Beta Isopleth
- 1994 Gross Beta Isopleth
- PTW Alignment
Isopleth lines at 1E-06 µCi/mL (Gross Beta TOGS)

Note: Concentrations are from groundwater collected in December 2014

GROSS BETA CONCENTRATIONS (December 2014)

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>408</td>
<td>1.90E-04</td>
</tr>
<tr>
<td>8609</td>
<td>1.29E-06</td>
</tr>
<tr>
<td>MP-01</td>
<td>3.06E-04</td>
</tr>
<tr>
<td>MP-02</td>
<td>3.66E-04</td>
</tr>
<tr>
<td>MP-03</td>
<td>2.24E-04</td>
</tr>
<tr>
<td>MP-04</td>
<td>3.12E-04</td>
</tr>
<tr>
<td>104</td>
<td>7.39E-05</td>
</tr>
<tr>
<td>501</td>
<td>9.08E-05</td>
</tr>
<tr>
<td>502</td>
<td>9.41E-05</td>
</tr>
<tr>
<td>8604</td>
<td>6.54E-05</td>
</tr>
<tr>
<td>105</td>
<td>6.44E-05</td>
</tr>
<tr>
<td>106</td>
<td>1.52E-06</td>
</tr>
<tr>
<td>116</td>
<td>2.59E-05</td>
</tr>
<tr>
<td>8603</td>
<td>7.54E-05</td>
</tr>
<tr>
<td>801</td>
<td>5.78E-06</td>
</tr>
<tr>
<td>803</td>
<td>2.60E-06</td>
</tr>
<tr>
<td>804</td>
<td>4.07E-07</td>
</tr>
<tr>
<td>8612</td>
<td>1.94E-08</td>
</tr>
<tr>
<td>GSEEP</td>
<td>3.10E-07</td>
</tr>
<tr>
<td>SP04</td>
<td>6.05E-07</td>
</tr>
<tr>
<td>SP06</td>
<td>1.39E-07</td>
</tr>
<tr>
<td>SP11</td>
<td>1.45E-06</td>
</tr>
<tr>
<td>SP12</td>
<td>3.62E-07</td>
</tr>
<tr>
<td>Former Lagoon 1</td>
<td>4.82E-06</td>
</tr>
<tr>
<td>8605</td>
<td>7.46E-06</td>
</tr>
</tbody>
</table>
Monitoring at North Plateau Seeps. Groundwater is also monitored along the northeast edge of the north plateau, where it seeps from the steep banks incised by Erdman Brook and Franks Creek. The downgradient seepage locations (GSEEP, SP04, SP06, SP11, and SP12), located east of the CDDL outside of the WVDP fence line, monitor conditions on the edge of the north plateau where groundwater discharges to the surface. (See Figure 4-2 in Appendix A.) Ten-year trends of gross beta concentrations at these five seep monitoring points are shown on Figure 4-7. Annual average gross beta concentrations were plotted against surface water background values because water from seepage points occasionally may include surface water (i.e., at seepage location SP11). Annual average concentrations at seep locations SP11, SP12, and GSEEP increased during 2014. The 2014 gross beta concentrations at seeps SP04 and SP06 decreased compared with 2013.

The highest gross beta concentration among the seepage locations has been observed at SP04, which decreased from an annual average maximum of 1.46E-06 µCi/mL in 2012 to an annual average of 6.79E-07 µCi/mL in 2014 below the DOE DCS for strontium-90 of 1.10E-06 µCi/mL. The strontium-90 concentrations in the north plateau plume have been demonstrated to be approximately half of the gross beta concentrations, suggesting the DOE DCSs have not been exceeded at most seep locations. The second highest gross beta concentration at the seep sampling locations occurred at SP11, located within the discharge area of the swamp drainage ditch. The annual average 2014 concentration at SP11 exceeded the strontium-90 DCS for the first time, with a concentration that is approximately 117% of the strontium-90 DCS. The gross beta activity detected as SP11 is believed to be the result of contaminated groundwater from the S&G unit that entered the northeast swamp drainage ditch, percolated back into the ground, then migrated to seep SP11.

Monitoring at the Northeast Swamp Drainage. The western and central lobes of the plume downgradient of the PTW are partially intercepted by the northeast swamp drainage ditch flowing west to east across the plume’s leading edge (see Figure 4-2 and Figure A-2 in Appendix A). Totalized flow through the drainage ditch is recorded biweekly. Surface water samples are collected biweekly and analyzed for radiological constituents at sampling location WNSWAMP located at the WVDP project boundary. North plateau plume groundwater seeping into this ditch is believed to be the main source of the strontium-90 activity at WNSWAMP. Approximately 16.2 million gal (61.1 million L) of water flowed through this monitoring point in 2014. (See “Waterborne Effluent Monitoring” in Chapter 2.)

Gross beta and strontium-90 concentrations at WNSWAMP exhibit seasonal variability. As shown on Figure 4-8, annual average strontium-90 concentrations at WNSWAMP have been above the strontium-90 DCS for each of the last 10 years. The 2014 annual average strontium-90 concentration shown on Figure 4-8 is a non-flow-weighted average, and therefore differs slightly from the flow-weighted average shown in Table 2-2. The non-flow-weighted average shown on Figure 4-8 was slightly lower in 2014 than 2013. The flow-weighted annual average strontium-90 at WNSWAMP on Table 2-2 increased slightly for 2014 compared to 2013. Both averages remain below the annual averages from 2007 to 2010 prior to installation of the PTW. The strontium-90 released through WNSWAMP accounted for an annual estimated dose of 1.73E-02 mrem in 2014. See “Maximum Dose (Waterborne) to an Off-Site Individual” in Chapter 3.

Monitoring of surface water downstream of the WVDP at the first point of public access, Felton Bridge on Cattaraugus Creek (location WFFELBR), continued to show that strontium-90 concentrations in 2014 were similar to historical concentrations from the Cattaraugus Creek background surface water location at Bigelow Bridge (WFBIGBR). The 2014 annual average concentration at WFFELBR was a non-detect.

Strontium-90 Plume Remediation Activities

Full-Scale Permeable Treatment Wall (PTW). In November 2010, an 860-ft-long full-scale PTW was installed to treat the north plateau strontium-90 plume. The PTW has operated now for over four full years. The overall average concentrations of strontium-90 immediately downgradient of the PTW are lower than they were when the wall was installed indicating that the PTW is removing strontium-90 from the groundwater. A map view and cross-section of the PTW installation is shown on Figure 4-9.

The PTW was installed through the entire thickness of the S&G unit (including the thick-bedded unit and the slackwater sequence, where present), and was keyed into the underlying, low-permeability unweathered Lavery till. Granular clinoptilolite (i.e., zeolite), a natural mineral with a porous structure that traps positively charged ions by ion exchange, including strontium, while allowing the groundwater to pass through, was used in the PTW.
A lined storm water drainage ditch (Smart-Ditch™) was also installed in September 2010 south of the PTW to intercept storm water from upland site areas and route it around the PTW to Franks Creek.

The PTW was selected and designed to address three remedial action objectives (RAOs):

- **RAO 1**: Reduce or eliminate strontium-90 presence in groundwater seepage leaving or potentially exiting the north plateau to ALARA, with a goal to be less than the DCG of 1.0E-06 µCi/mL (the RAOs for the PTW were determined before the DCGs were replaced by the DCSs);

- **RAO 2**: Minimize the future expansion of the strontium-90 plume beyond its current mapped limits; and

- **RAO 3**: Ensure that a technology selected for current containment of the strontium-90 plume does not preclude any strategies for addressing the plume during site decommissioning.

The PTW placement was chosen to not impact the CDDL and to limit the expansion of groundwater impacted by strontium-90 at or above the 1.0E-05 µCi/mL level, and consequently did not capture the plume’s leading edge as it existed in November 2010. Strontium-90 concentrations that existed downgradient of the PTW prior to the PTW’s installation were expected to increase for a period of time, and then eventually decrease when groundwater treated by the PTW begins to reach these downgradient areas. Recent north plateau monitoring shows evidence of treated groundwater exiting the PTW downgradient of the wall.

Removal of the MPPB and excavating subsurface soils in the plume source area are components of DOE’s ROD for decommissioning and/or long-term stewardship of the WVDP and the WNYNSC. Long-term strategies for management of the non-source area of the plume, including the PTW, will be evaluated as part of the Phase 2 decision-making process for the WVDP and the WNYNSC.

PTW Performance Monitoring Plan (PTWPMP). The PTWPMP was developed and implemented immediately following the PTW installation. This plan describes the performance monitoring requirements for the PTW. Data collected during 2014 was reported in an annual PTW performance monitoring report.

Quarterly sampling and monthly inspections were performed throughout 2014.

Performance monitoring data collected to date continue to indicate:

- groundwater flow patterns in the PTW area are similar to flow patterns observed prior to PTW construction, indicating that the PTW installation does not substantially alter groundwater flow conditions on the north plateau;

- groundwater treatment by ion exchange is occurring as evidenced by the fact that strontium-90 activity in groundwater inside the PTW typically is either not detected or substantially lower overall than strontium-90 activity levels upgradient of the PTW;

- geochemical differences observed in groundwater that has migrated into or through the zeolite also indicate that ion exchange is occurring;

- strontium-90 activity in groundwater immediately downgradient of the PTW has decreased; and

- strontium-90 activity that had already migrated past the PTW prior to its installation is continuing to migrate downgradient. However, downgradient strontium-90 concentrations are expected to decrease over time as groundwater treated by the PTW flows towards these areas.

Based on the January 2014 and January 2015 annual sampling results, there are no strontium-90 concentrations greater than 1.0E-05 µCi/mL (10,000 pCi/L) downgradient of the PTW and no detected strontium-90 activities above 1.0E-06 µCi/mL (1,000 pCi/L) in the downgradient eastern lobe of the strontium-90 plume.

These observations indicate the ongoing processes within the PTW continue to achieve the RAOs defined in the PTWPMP.

North Plateau Groundwater Monitoring Plan (NPGMP). A supplementary NPGMP was also developed in 2010, in conjunction with completing the full-scale PTW. The primary objective of the NPGMP is to monitor the strontium-90 plume migration in groundwater farther upgradient and downgradient of the PTW than the areas monitored under the PTWPMP. This monitoring program, which includes quarterly gross beta sampling at 26 well locations and water level measurements at...
40 well locations, was performed concurrent with the PTWPMP throughout 2014.

PTW Protection and Best Management Plan. The north plateau PTW protection and best management plan describes best management practices implemented to increase the effectiveness and longevity of the PTW. The practices include elimination of road-salt use near the PTW, storm water management via the upgradient Smart-Ditch™, and monthly inspections.

North Plateau Groundwater Recovery System (NPGRS). In 1995, the NPGRS was installed to slow the advance of the strontium-90 plume. (See Figure 4-2.) The NPGRS consists of three wells used to extract contaminated groundwater. Extracted groundwater was transferred to the LLW2 for treatment by ion exchange to remove strontium-90 with treated water ultimately discharged through the lagoon system to Erdman Brook via the SPDES-permitted outfall 001.

Based on groundwater plume mitigation provided by the PTW, the NPGRS was shut down in April 2013. During its operation, the system extracted and processed approximately 66 million gallons (249.8 million L) of contaminated groundwater. Closure of the NPGRS will be performed in accordance with SPDES closure requirements.

Pilot-Scale PTW. A pilot-scale PTW was constructed in 1999 with a clinoptilolite, selected for its ability to adsorb strontium-90 ions from groundwater. The data collected during the testing of the pilot PTW helped determine that the PTW technology was an effective remediation method for strontium-90-contaminated groundwater. Three wells within the pilot-scale PTW were monitored in 2014 under the NPGMP to support delineation of flow and transport of the plume across the north plateau.

Other Groundwater Sampling Observations on the North Plateau

Monitoring Near Former Lagoon 1. Southeast of the strontium-90 plume, elevated gross beta concentrations are documented in groundwater downgradient of former lagoon 1, which was backfilled in 1984. (See Figure 4-2.) Gross beta concentrations in wells 8605 and 111 are consistently above the strontium-90 DCS and are remaining stable from year to year, as shown in the 10-year trend graph on Figure 4-10. The gross beta activity source is assumed to be the radiologically contaminated material used as backfill and the residual sediment within former lagoon 1.

Tritium in North Plateau Groundwater. On the north plateau, elevated tritium concentrations have historically been observed downgradient of the MPPB, near the lag storage hardstand, and adjacent to and downgradient of the lagoon system. Tritium concentrations sitewide have been consistently decreasing. Tritium has a relatively short half-life (about 12.3 years) and dilution from surface water infiltration and groundwater recharge contributes to the decrease. Residual tritium activity is attributed to former nuclear fuel reprocessing operations. No new source of tritium is suspected. As shown in Table 4-7, the maximum tritium concentration measured in groundwater from the north plateau in 2014, 2.86E-05 µCi/mL, occurred at well point WP-C, downgradient of the MPPB (see Figure A-9 for the well point location). This concentration was approximately two orders of magnitude below the DCS for tritium of 1.9E-03 µCi/mL.

Radioisotopic Sampling Results on the North Plateau. In addition to being analyzed for gross alpha, gross beta, tritium, and strontium-90, samples from eight groundwater wells in the north plateau S&G unit (401, 406, 408, 1304, and MP-01 through MP-04) were analyzed for specific radionuclides (see Tables 4-3 and 4-4). The maximum radionuclide concentrations measured at either the north or south plateau during 2014 are presented in Table 4-7.

The MPPB wells (MP-01, -02, -03, and -04) are analyzed for the following additional radioisotopes to investigate their presence as a result of former MPPB operations: neptunium-237, plutonium-238, plutonium-239/240, plutonium-241, americium-241, and curium-243/244. None of these additional radionuclides were detected at the MPPB wells during 2014. (See Appendix D-2, Table D-2H.)

Two sampling locations on the south plateau (well 909 and the NDA sump [NDATR]) are also analyzed for specific radionuclides. Results are discussed later in this chapter and are tabulated in Appendix D-2. (Note that radium-226, radium-228, uranium-234, and uranium-238 occur naturally in the environment.)

Results for Volatile and Semivolatile Organic Compounds (VOCs and SVOCs). Per the 3008(h) Consent Order, select wells within the S&G unit are monitored for VOCs and SVOCs because concentrations of these compounds exceeding NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Groundwater Quality Standards were detected in some groundwater samples collected during the RFI.
Currently, the only S&G unit monitoring location with consistent positive VOC detections is well 8612, located northeast and downgradient of the CDDL at the northeast edge of the north plateau. (See Table 4-8, and Figure A-9 in Appendix A.) Figure 4-11 illustrates the concentration ranges of four VOCs historically detected at well 8612. Only one VOC (1,2-Dichloroethylene [total]) was detected during 2014 slightly above the TOGS 1.1.1 Class GA Groundwater Quality Standard. The concentration at well 8612 continued to decrease during 2014 from 5.7 micrograms per liter (µg/L) in March to 5.2 µg/L in December. These concentrations are not significantly above the practical quantitation limit of 5.0 µg/L. The VOCs detected in well 8612 are presumed to be from wastes buried in the CDDL.

TBP, an SVOC, has been continually detected in groundwater from well 8605, downgradient of former lagoon 1 since monitoring at this location began. A TOGS 1.1.1 water quality standard has not been established for TBP. The maximum concentration measured in 2014 (136 µg/L) was significantly lower than the historic high of 700 µg/L measured in December 1996. Overall concentrations of TBP at well 8605 are decreasing. (See Figure 4-12.) Historically, TBP has also been detected in well 111, located near well 8605, but at concentrations close to the quantitation limit of 10 µg/L. During 2014, TBP was not detected in well 111. TBP is thought to be residual contamination from liquid waste management activities in the former lagoon 1 area during nuclear fuel reprocessing.

A summary of maximum observed VOC and SVOC concentrations and a list of wells with concentrations that exceeded GSLs, are provided in Tables 4-8 and the bottom of Table 4-9, respectively.

Metals Sampling on the North Plateau. In 2005, 2007, and 2008, select groundwater wells were sampled to evaluate metals concentrations in groundwater impacted by the strontium-90 plume migrating from the MPPB source area. No metals have been determined to be associated with the strontium-90 plume.

During 2014, routine metals sampling continued to be performed, as outlined in the GMP. The sampling results were compared with the established GSLs and background levels (see Table 4-9). The only metals detected above background in groundwater in 2014 were barium, chromium, copper, and nickel. Barium was detected above background concentrations at wells 502, MP-01, and MP-03. Copper was detected above background concentrations at wells 502 and MP-01. Nickel was detected at concentrations above background and the GSL in wells 405, 502 and 706. Chromium was detected above background and the GSL at wells 405, 502, 706, and MP-01 (see Table D-2G in Appendix D-2). Wells 405, 502, and 706 are stainless-steel wells that have historically shown evidence of corrosion. Chromium and nickel can leach from the corroding well screen and adsorb to fine sediments within the well. Naturally occurring levels of chromium and other metals have been observed in WVDP background monitoring wells.

Groundwater Sampling Observations on the South Plateau Including the NRC-Licensed Disposal Area (NDA)

Interim Measure (IM). In 1990, a trench system was constructed through the WLT along the northeast and northwest sides of the NDA to intercept and collect potentially contaminated groundwater. Sampling location NDATR is a sump at the lowest point of the interceptor trench. Groundwater is collected at NDATR and transferred to the LLW2 for processing. In 2014, no organic constituents were detected in groundwater from the NDA interceptor trench. Groundwater elevations are monitored quarterly in and around the interceptor trench to ensure that an inward gradient is maintained.

A second IM, to improve the stability of the earthen cap and to limit infiltration of surface water and precipitation into the NDA, was completed in December 2008. This included installing a geosynthetic cap over the NDA, a low-permeability upgradient slurry wall, and surface water drainage diversions. (See also “Interim Measures [IMs]” under “RCRA §3008(h) Administrative Order on Consent” in the ECS.) Water level data from piezometers installed to monitor the slurry wall indicate that the slurry wall and geomembrane cover are causing the WLT to become dry in some areas. The reduced water volume extracted from the interceptor trench since the cap and barrier wall were installed is another indication that the IM is effectively reducing flow through the NDA. The total volume pumped annually from the NDA trench in 2014 (74,494 gal [281,990 L]) was approximately one-fifth of the volume pumped in CY 2007, before the IM. (See Figure 4-14.)

Refer to the Environmental Compliance section titled “RCRA §3008(h) Administrative Order on Consent” for further discussion of the NDA IMs.
Radioisotopic Sampling Results on the South Plateau.

Gross beta and several radioisotope concentrations in groundwater from NDATR (see Table 4-9, Figure 4-13, and Appendix A, Figure A-10) continued to be elevated with respect to GSLs or to concentrations in background monitoring locations on the south plateau. Gross beta concentrations at NDATR have decreased from the maximum observed concentration of 1.75E-06 µCi/L in September 2009 after the 2008 IM to below the gross beta GSL of 1.00E-6 µCi/mL in 2013 and 2014. The increases immediately following the installation of the upgradient slurry wall and cap are believed to be attributable to less dilution of water collected in the trench because groundwater and surface water infiltration into the NDA was significantly reduced. Similar to the north plateau, strontium-90

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Well ID With Maximum Concentration</th>
<th>Flag</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>Well ID With Maximum Concentration</th>
<th>Flag</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>GSL (µCi/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>909</td>
<td>-</td>
<td>7.39E-07</td>
<td>WP-C</td>
<td>2.86E-05</td>
<td>1.78E-07</td>
<td></td>
</tr>
<tr>
<td>Strontium-90</td>
<td>MP-02</td>
<td>-</td>
<td>1.51E-04</td>
<td>-</td>
<td>5.90E-09</td>
<td>5.02E-09</td>
<td></td>
</tr>
<tr>
<td>Technetium-99</td>
<td>MP-02</td>
<td>-</td>
<td>4.11E-08</td>
<td>-</td>
<td>5.02E-09</td>
<td>9.61E-10</td>
<td></td>
</tr>
<tr>
<td>Iodine-129</td>
<td>NDATR</td>
<td>-</td>
<td>2.18E-08</td>
<td>-</td>
<td>9.61E-10</td>
<td>1.33E-09</td>
<td></td>
</tr>
<tr>
<td>Radium-226</td>
<td>401</td>
<td>-</td>
<td>2.80E-09</td>
<td>1304</td>
<td>2.09E-09</td>
<td>2.16E-09</td>
<td></td>
</tr>
<tr>
<td>Radium-228</td>
<td>NDATR</td>
<td>-</td>
<td>3.45E-09</td>
<td>-</td>
<td>2.16E-09</td>
<td>9.61E-10</td>
<td></td>
</tr>
<tr>
<td>Uranium-232</td>
<td>MP-02</td>
<td>J</td>
<td>1.28E-10</td>
<td>-</td>
<td>NE</td>
<td>6.24E-10</td>
<td></td>
</tr>
<tr>
<td>Uranium-233/234</td>
<td>909</td>
<td>-</td>
<td>1.68E-09</td>
<td>1304</td>
<td>3.79E-10</td>
<td>6.24E-10</td>
<td></td>
</tr>
<tr>
<td>Uranium-235/236</td>
<td>MP-04</td>
<td>J</td>
<td>1.78E-10</td>
<td>-</td>
<td>8.07E-11</td>
<td>4.97E-10</td>
<td></td>
</tr>
<tr>
<td>Uranium-238</td>
<td>909</td>
<td>J</td>
<td>1.26E-09</td>
<td>1304</td>
<td>2.82E-10</td>
<td>4.97E-10</td>
<td></td>
</tr>
<tr>
<td>Total Uranium</td>
<td>NDATR</td>
<td>-</td>
<td>3.31E-03</td>
<td>1304</td>
<td>4.08E-04</td>
<td>1.34E-03</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bolding indicates that the radionuclide exceeds the GSL.
- indicates that none of the regulatory or environmental surveillance wells exhibited positive results for these radionuclides.
a The table presents the maximum concentrations of radionuclides that were positively identified in groundwater wells at the WVDP, all other radionuclides were not positively identified, or were not analyzed.
b GSLs for radiological constituents are set equal to the larger of the background concentrations or NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA Groundwater Quality Standards (see Table D-1A).
c The "J" flag indicates the result is an estimated value.
NE - GSL for this radionuclide not established.

TABLE 4-8

2014 Summary of Maximum Concentrations of Organic Constituents in Select WVDP Groundwater Wells

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Regulatory/Waste Management Monitoring Program</th>
<th>NYS Class GA Groundwater Quality Standardsa (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Well with the Highest Concentration</td>
<td>Maximum Concentration (µg/L)</td>
</tr>
<tr>
<td>1,2-Dichloroethylene (total)</td>
<td>8612</td>
<td>5.7</td>
</tr>
<tr>
<td>Tributyl phosphate</td>
<td>8605</td>
<td>136</td>
</tr>
</tbody>
</table>

NA - Not applicable
a Source: 6 NYCRR Part 703, Division of Water TOGS 1.1.1, NYS Groundwater Effluent Limitations (Class GA).
is the predominant contributing radioisotope to the measured gross beta concentrations in the NDA trench water.

NDATR samples in 2014 exhibited concentrations for iodine-129 that were slightly above background similar to the past several years. Elevated iodine-129 concentrations observed since the 2008 IM are believed to be attributable to less dilution of the water that collects within the trench (See Table 4-7).

WLT well 909 exhibited elevated tritium, iodine-129, strontium-90, and several uranium radioisotope concentrations above their respective GSLs during 2014, consistent with historical values, as shown in Table 4-9 and Appendix D-2.

Radionuclide concentrations in groundwater downgradient of the NDA are presumed to be associated with former waste burial operations.

Additional Monitoring and Investigations

Groundwater Monitoring Downgradient of the Waste Tank Farm (WTF). Waste in the underground tanks was removed and solidified through the VIT process from 1996 to 2002. The underground waste tanks are being stabilized by a tank and vault drying system (T&VDS) that began operating in December 2010. Three of the tanks are dry and liquid levels are decreasing in the fourth tank. This system is successfully reducing the liquid volume in the tanks and vaults through evaporation. (See “WTF and the T&VDS” in the Environmental Compliance Summary.) Throughout waste processing activities, groundwater controls were in place to (1) reduce the upward hydrostatic pressure on the tanks, and (2) to maintain an inward hydraulic gradient toward the tanks, thereby inhibiting potential leaks from the tanks. The natural inward hydraulic gradient is influenced by periodically pumping a dewatering well, located outside the vault, that also controls the hydrostatic pressure near the tanks.

Radioactivity in groundwater near the WTF is routinely monitored and evaluated. Elevated gross beta concentrations from well 8607 have been observed since 1994, with the maximum concentration measured in 2005. Gross beta activity has also been observed in the dewatering well and the tank 8D-2 pan. During 2014, gross beta concentrations at well 8607 were slightly higher, on average, than 2013 concentrations but were well below the highest historical concentration observed in 2005.

New WVDP Water Supply Wells. As indicated in Chapter 2, in 2014 the WVDP converted its water supply from a surface water source to a groundwater source provided by two newly installed bedrock wells located approximately 700 feet to the southwest of the MPPB. In addition to monitoring the drinking water, three source water protection plan wells are sampled to provide assurance that the bedrock groundwater is free of contamination. Results from 2014 for these three wells, presented in Appendix B-6, show that radiological indicator results are within site background concentrations.

Summary

Evaluation of groundwater results from 2014 continues to show that the most widespread area of groundwater contamination at the WVDP is the strontium-90 plume in the S&G unit on the north plateau. Efforts to reduce contaminant levels in the downgradient portions of the north plateau plume included the 2010 installation of the full-scale PTW across the leading edge of the plume and installation of the NPGRS in 1995. Four years of post-installation monitoring results indicate the PTW is removing strontium-90 from the groundwater exiting the wall. Other localized areas of groundwater contamination have been observed downgradient of former lagoon 1, also on the north plateau, and downgradient of the NDA on the south plateau. Groundwater contaminant concentrations downgradient of Lagoon 1 are remaining stable or decreasing. Measures to reduce and collect water moving through the NDA including the NDA trench installed in 1990 and the slurry wall and geomembrane cover installed in 2008 are reducing the water level in the NDA and thus the potential for groundwater contamination flowing out of the NDA. The T&VDS is effectively drying out the waste tanks, further reducing the potential for groundwater contamination in the WTF.

As discussed in the ECS, longer-term measures to reduce potential groundwater contamination as described in Phase 1 of the EIS preferred alternative selected by DOE in the ROD (April 2010), include removing the MPPB, removing the lagoons, and excavating the source area of the north plateau plume.
TABLE 4-9

2014 Groundwater Monitoring Results Exceeding GSLs and Background Levels

<table>
<thead>
<tr>
<th>Geologic Unit (plateau)</th>
<th>Groundwater Sampling Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td></td>
</tr>
<tr>
<td>1 > GSL</td>
<td>S&G (NP) 111 8605</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) 1005</td>
</tr>
<tr>
<td></td>
<td>ULT (SP) 910R</td>
</tr>
<tr>
<td>Gross Beta</td>
<td></td>
</tr>
<tr>
<td>21 > GSL</td>
<td>S&G (NP)</td>
</tr>
<tr>
<td></td>
<td>GSEEP 104 408 803 8609 WP-C</td>
</tr>
<tr>
<td></td>
<td>SP04 105 501 804 8612 WP-H</td>
</tr>
<tr>
<td></td>
<td>SP06 106 502 8603 MP-01</td>
</tr>
<tr>
<td></td>
<td>SP11 111 605 8604 MP-02</td>
</tr>
<tr>
<td></td>
<td>SP12 116 801 8605 MP-03</td>
</tr>
<tr>
<td></td>
<td>103 205 802 8607 MP-04</td>
</tr>
<tr>
<td></td>
<td>ULT (NP) 107</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) NDATR 909</td>
</tr>
<tr>
<td>Tritium</td>
<td></td>
</tr>
<tr>
<td>13 > GSL</td>
<td>S&G (NP)</td>
</tr>
<tr>
<td></td>
<td>GSEEP 105 602A 8603 WP-A WP-H</td>
</tr>
<tr>
<td></td>
<td>ULT (NP) 108 110</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) 909</td>
</tr>
<tr>
<td>Strontium-90</td>
<td></td>
</tr>
<tr>
<td>11 > GSL</td>
<td>S&G (NP)</td>
</tr>
<tr>
<td></td>
<td>408 502 8609 MP-02 MP-04</td>
</tr>
<tr>
<td></td>
<td>501 801 MP-01 MP-03</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) NDATR 909</td>
</tr>
<tr>
<td>Technetium-99</td>
<td></td>
</tr>
<tr>
<td>5 > GSL</td>
<td>S&G (NP) 408</td>
</tr>
<tr>
<td></td>
<td>MP-01 MP-02 MP-03 MP-04</td>
</tr>
<tr>
<td>Iodine-129</td>
<td></td>
</tr>
<tr>
<td>2 > GSL</td>
<td>WLT (SP) NDATR 909</td>
</tr>
<tr>
<td>Radium-226</td>
<td></td>
</tr>
<tr>
<td>3 > GSL</td>
<td>S&G (NP) 401 406 1304</td>
</tr>
<tr>
<td>Radium-228</td>
<td></td>
</tr>
<tr>
<td>2 > GSL</td>
<td>S&G (NP) 408</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) NDATR</td>
</tr>
<tr>
<td>Uranium-233/234</td>
<td></td>
</tr>
<tr>
<td>4 > GSL</td>
<td>S&G (NP) MP-03 MP-04</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) NDATR 909</td>
</tr>
<tr>
<td>Uranium-235/236</td>
<td></td>
</tr>
<tr>
<td>3 > GSL</td>
<td>S&G (NP) MP-02 MP-04</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) NDATR</td>
</tr>
<tr>
<td>Uranium-238</td>
<td></td>
</tr>
<tr>
<td>5 > GSL</td>
<td>S&G MP-02 MP-03 MP-04</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) NDATR 909</td>
</tr>
<tr>
<td>Total Uranium</td>
<td></td>
</tr>
<tr>
<td>3 > GSL</td>
<td>S&G (NP) 408</td>
</tr>
<tr>
<td></td>
<td>WLT (SP) NDATR 909</td>
</tr>
</tbody>
</table>
TABLE 4-9 (concluded)
2014 Groundwater Monitoring Results Exceeding GSLs and Background Levels

<table>
<thead>
<tr>
<th>METALS</th>
<th>Geologic Unit (plateau)</th>
<th>Groundwater Sampling Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>0 > GSL 3 > BKG S&G (NP)</td>
<td>502 MP-01 MP-03</td>
</tr>
<tr>
<td>Chromium</td>
<td>4 > GSL 4 > BKG S&G (NP)</td>
<td>405 502 706 MP-01</td>
</tr>
<tr>
<td>Copper</td>
<td>0 > GSL 2 > BKG S&G (NP)</td>
<td>502 MP-01</td>
</tr>
<tr>
<td>Nickel</td>
<td>3 > GSL 3 > BKG S&G (NP)</td>
<td>405 502 706</td>
</tr>
<tr>
<td>ORGANICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorothen (total)</td>
<td>1 > TOGS 1 > DL S&G (NP)</td>
<td>8612</td>
</tr>
<tr>
<td>Tributyl phosphate</td>
<td>No TOGS S&G (NP)</td>
<td>8605</td>
</tr>
</tbody>
</table>

Note: Bolded wells indicate 2014 results that exceed GSLs. Unbolded wells indicated 2014 results that exceeded background.

Key:
- BKG - Background
- S&G - Sand and Gravel
- DL - Detection Limit
- ULT - Unweathered Lavery Till
- NP - North Plateau
- WLT - Weathered Lavery Till
- SP - South Plateau

a The site-specific GSLs for radiological constituents were set equal to the larger of the WVDP background concentrations or the NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards as discussed on page D-1 and presented in Table D-1A. The GSLs for metals were set equal to the larger of the background concentration or NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards as presented in Table D-1B. Organic constituents were compared directly with NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

b The data used for the calculation of background values collected from 1991 through September 2009 were taken from background wells 301, 401, 706, and 1302 in the sand and gravel unit on the north plateau. The background concentration was set to the upper limit of the 95% confidence interval.

c No TOGS 1.1.1 standard has been established for tributyl phosphate.
FIGURE 4-3
Annual Average Gross Beta Concentrations
at Monitoring Wells Downgradient of the North Plateau Strontium-90 Plume Source Area

Note: S&G background (Bkg) wells 301, 401, 706, and 1302 are averaged for this comparison.

FIGURE 4-4
Annual Average Gross Beta Concentrations
at Monitoring Wells Centrally Located Within the North Plateau Strontium-90 Plume

Note: S&G background (Bkg) wells 301, 401, 706, and 1302 are averaged for this comparison.
FIGURE 4-5
Annual Average Gross Beta at Monitoring Wells Upgradient of the PTW

Note: S&G background (Bkg) wells 301, 401, 706, and 1302 are averaged for this comparison.

FIGURE 4-6
Annual Average Gross Beta at Monitoring Wells Downgradient of the PTW

Note: S&G background (Bkg) wells 301, 401, 706, and 1302 are averaged for this comparison.
Chapter 4. Groundwater Protection Program

FIGURE 4-7
Annual Average Gross Beta Concentrations at Seeps
From the Northeast Edge of the North Plateau

Note: Background (Bkg) from surface water sampling location WFBCBKG at Felton Bridge upgradient of the WVDP.

FIGURE 4-8
Annual Average Strontium-90 Concentrations at WNSWAMP

Note: Derived concentration standards (DCSs) are used as an evaluation tool for results from on-site locations as part of the routine environmental monitoring program. DCS quantities represent concentrations that would result in a member of the public receiving 100 mrem effective dose following continuous exposure for one year. The WNSWAMP location is not accessible to the public.
FIGURE 4-9
Map View of the PTW

Cross-sectional View of the PTW

FIGURE 4-10
Annual Average Gross Beta Concentrations at Monitoring Wells Near Former Lagoon 1

Note: S&G background (Bkg) wells 301, 401, 706, and 1302 are averaged for this comparison.
Chapter 4. Groundwater Protection Program

FIGURE 4-11
Concentrations of 1,2-DCE-t, 1,1,1-TCA, 1,1-DCA, and DCDFMeth
at Well 8612 in the S&G Unit

For all analytes:
PQL = 5 µg/L
TOGS 1.1.1 limit = 5 µg/L

Note: PQL = Pracitcal Quantitation Limit
1,1-DCA = 1,1-Dichloroethane
1,2-DCE-t = 1,2-Dichloroethylene (total)
DCDFMeth = Dichlorodifluoromethane
1,1,1-TCA = 1,1,1-Trichloroethane

FIGURE 4-12
Concentrations of Tributyl Phosphate at Monitoring Wells Near Former Lagoon 1
in the S&G Unit

PQL = 10 µg/L
TOGS 1.1.1 Limit = None
Notes: WLT background well for the south plateau is 1008C. In 2007, well 910 was determined to be damaged such that groundwater samples collected from this well were no longer representative of the ULT. Well 910 was therefore decommissioned in 2008 and replaced with well 910R.
Figure 4-14
Volume of Water Pumped From the NDA Interceptor Trench

Note: Q1 = Jan-Mar Q3 = Jul-Sep
Q2 = Apr-Jun Q4 = Oct-Dec

<table>
<thead>
<tr>
<th>Year</th>
<th>CY Total</th>
<th>Quarterly Volume</th>
<th>Yearly Cumulative Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>452,332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>389,840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>763,308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>79,446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>63,355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>84,373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>64,035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>73,417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>74,494</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This section provides background information that may be useful to the reader in understanding and interpreting the results presented in this ASER. First, it presents brief summaries of concepts pertaining to radiation and radioactivity, including:

- radioactive decay;
- types of ionizing radiation;
- measurement of radioactivity;
- measurement of dose;
- background radiation; and
- potential health effects of radiation.

It describes how data are presented in the ASER, and presents tables of unit prefixes, units of measure, and conversion factors. It discusses limits applicable to air emissions and water effluents, and describes (and presents a table of) the dose-based DOE DCSs. It includes a discussion of CAP88-PC, the computer code that can be used to evaluate compliance with the air dose standard. It also presents discussions of 1) water quality classifications, standards, and limits for ambient water; 2) potable water standards; 3) oil and sediment guidelines; and 4) evaluation of monitoring data with respect to limits.

Radiation and Radioactivity

Radioactivity is a property of atoms with unstable nuclei. The unstable nuclei spontaneously decay by emitting radiation in the form of energy (such as gamma rays) or particles (such as alpha and beta particles) (see inset on following page). If the emitted energy or particle has enough energy to break a chemical bond or to knock an electron loose from another atom, a charged particle (an “ion”) may be created. This radiation is known as “ionizing radiation.”

As used in this ASER, the term “radiation” refers only to ionizing radiation and does not include nonionizing forms of radiation such as visible light, radio waves, microwaves, infrared light, or ultraviolet light.

Radioactive Decay

An atom is the smallest component of an element having the chemical properties of the element. An atom consists of a central core (the nucleus), composed of positively charged particles (protons) and particles with no charge (neutrons), surrounded by negatively charged particles (electrons) that revolve in orbits in the region surrounding the nucleus. The protons and neutrons are much more massive than the electrons; therefore, most of an atom’s mass is in the nucleus.

An element is defined by the number of protons in its nucleus, its atomic number. For example, the atomic number of hydrogen is one (one proton), the atomic number of strontium is 38 (38 protons), and the atomic number of cesium is 55 (55 protons).

The mass number of an atom, its atomic weight, is equal to the total number of protons and neutrons in its nucleus. For example, although an atom of hydrogen will always have one proton in its nucleus, the number of neutrons may vary. Hydrogen atoms with zero, one, or two neutrons will have atomic weights of one, two, or three, respectively. These atoms are known as isotopes (or nuclides) of the element hydrogen. Elements may have many isotopes. For instance, the elements strontium and cesium have more than 30 isotopes each.

Isotopes may be stable or unstable. An atom from an unstable isotope will spontaneously change to another atom. The process by which this change occurs, that is, the spontaneous emission from the nucleus of alpha or beta particles, often accompanied by gamma radiation, is known as radioactive decay. Depending upon the type of radioactive decay, an atom may be transformed to another isotope of the same element or, if the number of protons in the nucleus has changed, to an isotope of another element.

Isotopes (nuclides) that undergo radioactive decay are called radioactive and are known as radioisotopes or radionuclides. Radionuclides are customarily referred to by their atomic weights. For instance, the radionuclides of hydrogen, strontium, and cesium measured at the WVDP are hydrogen-3 (also known as tritium), strontium-90, and cesium-137. For some radionuclides, such as cesium-137, a short-lived intermediate is formed that decays by gamma emission. This intermediate radionuclide may be designated by the letter “m” (for metastable) following
Some Types of Ionizing Radiation

Alpha Particles. An alpha particle is a positively charged particle consisting of two protons and two neutrons. Compared to beta particles, alpha particles are relatively large and heavy and do not travel very far when ejected by a decaying nucleus. Therefore, alpha radiation is easily stopped by a few centimeters of air or a thin layer of material, such as paper or skin. However, if radioactive material is ingested or inhaled, the alpha particles released inside the body can damage soft internal tissues because their energy can be absorbed by tissue cells in the immediate vicinity of the decay. An example of an alpha-emitting radionuclide is the uranium isotope with an atomic weight of 232 (uranium-232). Uranium-232 was in the HLW mixture at the WVDP as a result of a thorium-based nuclear fuel reprocessing campaign conducted by Nuclear Fuel Services, Inc. Uranium-232 has been detected in liquid waste streams.

Beta Particles. A beta particle is an electron emitted during the breakdown of a neutron in a radioactive nucleus. Compared to alpha particles, beta particles are smaller, have less of a charge, travel at a higher speed (close to the speed to light), and can be stopped by wood or a thin sheet of aluminum. If released inside the body, beta particles do much less damage than an equal number of alpha particles because beta particles deposit energy in tissue cells over a larger volume than alpha particles. Strontium-90, a fission product found in the liquids associated with the HLW, is an example of a beta emitting radionuclide.

Gamma Rays. Gamma rays are high-energy “packets” of electromagnetic radiation, called photons, that are emitted from the nucleus. Gamma rays are similar to x-rays, but are generally more energetic. If an alpha or beta particle released by a decaying nucleus does not carry off all the energy generated by the nuclear disintegration, the excess energy may be emitted as gamma rays. If the released energy is high, a very penetrating gamma ray is produced that can be effectively reduced only by shielding consisting of several inches of a dense material, such as lead, or of water or concrete several feet thick. Although large amounts of gamma radiation are dangerous, gamma rays are also used in lifesaving medical procedures. An example of a gamma-emitting radionuclide is barium-137m a short-lived daughter product of cesium-137. Both barium-137m and its precursor, cesium-137, are major constituents of the WVDP HLW.

the atomic weight. For cesium-137, the intermediate radionuclide is barium-137m, with a half-life of less than three minutes.

The process of radioactive decay will continue until only a stable, nonradioactive isotope remains. Depending on the radionuclide, this process can take anywhere from less than a second to billions of years. The time required for half of the radioactivity to decay is called the radionuclide’s **half-life**. Each radionuclide has a unique half-life. The half-life of hydrogen-3 is slightly more than 12 years, both strontium-90 and cesium-137 have half-lives of approximately 30 years, and plutonium-239 has a half-life of more than 24,000 years.

Knowledge of radionuclide half-lives is often used to estimate past and future inventories of radioactive material. For example, a 1.0 millicurie source of cesium-137 in 2006 would have measured 2.0 millicuries in 1976 and will be 0.5 millicuries in 2036. For a list of half-lives of radionuclides applicable to the WVDP, see Table UI-4.

Measurement of Radioactivity

As they decay, radionuclides emit one or more types of radiation at characteristic energies that can be measured and used to identify the radionuclide. Detection instruments measure the quantity of radiation emitted over a specified time. From this measurement, the number of decay events (nuclear transformations) over a fixed time can be calculated.

Radioactivity is measured in units of curies (Ci) or becquerels (Bq). One Ci (based on the rate of decay of one gram of radium-226) is defined as the “quantity of any radionuclide that undergoes an average transformation rate of 37 billion transformations per second.” In the International System of Units (SI), one Bq is equal to one transformation per second. In this ASER, radioactivity is customarily expressed in units of Ci followed by the equivalent SI unit in parentheses, as follows: 1 Ci (3.7E+10 Bq).

In this report, measurements of radioactivity in a defined volume of an environmental media, such as air or water, are presented in units of concentration. Since levels of
radioactivity in the environment are typically very low, concentrations may be expressed in µCi/mL, with SI units (Bq/L) in parentheses. (One microcurie is equal to one millionth of a curie.)

Measurement of Dose

The amount of energy absorbed by a material that receives radiation is measured in rads. A rad is 100 ergs of radiation energy absorbed per gram of material. (An erg is the approximate amount of energy necessary to lift a mosquito one-sixteenth of an inch.) “Dose” is a means of expressing the amount of energy absorbed, taking into account the effects of different kinds of radiation.

Alpha, beta, and gamma radiation affect the body to different degrees. Each type of radiation is given a quality factor that indicates the extent of human cell damage it can cause compared with equal amounts of other ionizing radiation energy. Alpha particles cause 20 times as much damage to internal tissues as x-rays, so alpha radiation has a quality factor of 20, compared to gamma rays, x-rays, or beta particles, each of which have a quality factor of one.

The unit of dose measurement to humans is the rem. The number of rem is equal to the number of rads multiplied by the quality factor for each type of radiation. In the SI system, dose is expressed in sieverts. One Sv equals 100 rem. One rem equals 1,000 mrem, the unit used to express standards for dose to man from air and water sources, as applicable to this ASER. This ASER expresses dose in standard units, followed by equivalent SI units in parentheses, as follows: 1 mrem (0.01 millisievert [mSv]).

Background Radiation

Background radiation is always present, and everyone is constantly exposed to low levels of such radiation from both naturally occurring and man-made sources. In the U.S. the average total annual exposure to low-level background radiation is estimated to be about 620 mrem or 6.2 mSv. About one-half of this radiation, approximately 310 mrem (3.1 mSv), comes from natural sources. The other half (about 310 mrem [3.1 mSv]) comes from medical procedures, consumer products, and other man-made sources (NCRP Report Number 160, 2009). (See Figure 3-1 in Chapter 3.)

Background radiation includes cosmic rays; the decay of natural elements, such as potassium, uranium, thorium, and radon; and radiation from sources such as chemical fertilizers, smoke detectors, and cigarettes. Actual doses vary depending on such factors as geographic location, building ventilation, and personal habits.

Potential Health Effects of Radiation

The three primary pathways by which people may be exposed to radiation are (1) direct exposure, (2) inhalation, and (3) ingestion. Exposure from radiation may be from a source outside the body (external exposure) or from radioactive particles that have been taken in by breathing or eating and have become lodged inside the body (internal exposure). Radionuclides that are taken in are not distributed in the same way throughout the body. Radionuclides of strontium, plutonium, and americium concentrate in the skeleton, while radioisotopes of iodine concentrate in the thyroid. Radionuclides such as hydrogen-3 (tritium), carbon-14, or cesium-137, however, will be distributed uniformly throughout the body.

Living tissue in the human body can be damaged by ionizing radiation. The severity of the damage depends upon several factors, among them the amount of exposure (low or high), the duration of the exposure (long-term [chronic] or short-term [acute]), the type of radiation (alpha, beta, and gamma radiations of various energies), and the sensitivity of the human (or organ) receiving the radiation. The human body has mechanisms that repair damage from exposure to radiation; however, repair processes are not always successful.

Biological effects of exposure to radiation may be either somatic or genetic. Somatic effects are limited to the exposed individual. For example, a sufficiently high exposure could cause clouding of the eye lens or a decrease in the number of white blood cells. Genetic effects may show up in future generations. Radiation could damage chromosomes, causing them to break or join incorrectly with other chromosomes. Radiation-produced genetic defects and mutations in the offspring of an exposed parent, while not positively identified in humans, have been observed in some animal studies.

Assessing the biological damage from low-level radiation is difficult because other factors can cause the same symptoms as radiation exposure. Moreover, the body is able to repair damage caused by low-level radiation. Epidemiological studies have not demonstrated adverse health effects in individuals exposed to small doses (less than 10 rem) over a period of years. (Note that average natural background radiation in the U.S. is about 0.31 rem/year, and estimated annual dose from activities
at the WVDP is at least three orders of magnitude lower than this dose.)

The effect most often associated with exposure to relatively high levels of radiation appears to be an increased risk of cancer. However, scientists have not been able to demonstrate with certainty that exposure to low-level radiation causes an increase in injurious biological effects, nor have they been able to determine if there is a level of radiation exposure below which there are no adverse biological effects.

Data Reporting

In the ASER text, radiological units (e.g., rem, rad, curie) are presented first, followed by the SI equivalent in parentheses. Nonradiological measurements are presented in English units, followed by the metric unit equivalent in parentheses. See Tables UI-1, UI-2, and UI-3 for a summary of unit prefixes, units of measurement, and basic conversion factors used in this ASER.

Where results are very large or very small, scientific notation is used. Numbers greater than 10 are expressed with a positive exponent. To convert the number to its decimal form, the decimal point must be moved to the right by the number of places equal to the exponent. For example, 1.0E+06 would be expressed as 1,000,000 (one million). Numbers smaller than 1 are expressed with a negative exponent. For example, 1.0E-06 would be expressed as 0.000001 (one millionth).

Radiological data are reported as a result plus or minus (±) an associated uncertainty, customarily the 95% confidence interval. The uncertainty is in part due to the random nature of radioactive decay. Generally, the relative uncertainty in a measurement increases as the amount of radioactivity being sampled decreases. For this reason, low-level environmental analyses for radioactivity are especially prone to significant uncertainty in comparison with the result. Radiological data are presented in the following manner:

Example: 1.04±0.54E-09

Where:

* 1.04 = the result
* ±0.54 = plus or minus the associated uncertainty
* E-09 = times 10 raised to the power -09

Sources of uncertainty may include random components (e.g., radiological counting statistics) or systematic components (e.g., sample collection and handling, measurement sensitivity, or bias). Radiological data in this report include both a result and uncertainty term. The uncertainty term represents only the uncertainty associated with the analytical measurement which for environmental samples is largely due to the random nature of radioactive decay. When such radiological data are used in calculations, such as estimating the total curies released from an air or water effluent point, the other parameter used in the calculation (e.g., air volumes, water volumes), typically do not have an associated uncertainty value available. As such, the uncertainties in this report for such calculated values only reflect the uncertainty associated with the radiological results used in the calculation. The actual (total propagated) uncertainty of such values would be larger if other components of uncertainty were available and included in these estimates.

Radiological results are calculated using both sample counts and background counts. If the background count is greater than the sample count, a negative result term will be reported. The constituent is considered to be detected if the result is larger than the associated uncertainty (i.e., a “positive” detection). Nonradiological data are not reported with an associated uncertainty.

In general, the detection limit is the minimum amount of a constituent that can be detected, or distinguished from background, by an instrument or a measurement technique. If a result is preceded by the symbol “<” (i.e., <5 parts per million [ppm]), the constituent was not measurable below the detection limit (in this example, 5 ppm).
TABLE UI-2
Units of Measure Used in this ASER

<table>
<thead>
<tr>
<th>Type</th>
<th>Measurement</th>
<th>Symbol</th>
<th>Type</th>
<th>Measurement</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>meter</td>
<td>m</td>
<td>Dose</td>
<td>rad (absorbed dose)</td>
<td>rad</td>
</tr>
<tr>
<td></td>
<td>centimeter</td>
<td>cm</td>
<td></td>
<td>rem (dose equivalent)</td>
<td>rem</td>
</tr>
<tr>
<td></td>
<td>kilometer</td>
<td>km</td>
<td></td>
<td>millirem</td>
<td>mrem</td>
</tr>
<tr>
<td></td>
<td>inch</td>
<td>in</td>
<td></td>
<td>sievert</td>
<td>Sv</td>
</tr>
<tr>
<td></td>
<td>foot</td>
<td>ft</td>
<td></td>
<td>millisievert</td>
<td>mSv</td>
</tr>
<tr>
<td></td>
<td>mile</td>
<td>mi</td>
<td></td>
<td>gray</td>
<td>Gy</td>
</tr>
<tr>
<td>Volume</td>
<td>gallon</td>
<td>gal</td>
<td>Exposure</td>
<td>roentgen</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>liter</td>
<td>L</td>
<td></td>
<td>milliroentgen</td>
<td>mR</td>
</tr>
<tr>
<td></td>
<td>milliliter</td>
<td>mL</td>
<td></td>
<td>microroentgen</td>
<td>µR</td>
</tr>
<tr>
<td></td>
<td>cubic meter</td>
<td>m³</td>
<td>Concentration</td>
<td>parts per million</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>cubic feet</td>
<td>ft³</td>
<td></td>
<td>parts per billion</td>
<td>ppb</td>
</tr>
<tr>
<td>Area</td>
<td>acre</td>
<td>ac</td>
<td></td>
<td>parts per trillion</td>
<td>ppt</td>
</tr>
<tr>
<td></td>
<td>hectare</td>
<td>ha</td>
<td></td>
<td>milligrams per L (ppm)</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>square meter</td>
<td>m²</td>
<td></td>
<td>micrograms per L (ppb)</td>
<td>µg/L</td>
</tr>
<tr>
<td></td>
<td>square foot</td>
<td>ft²</td>
<td></td>
<td>nanograms per L (ppt)</td>
<td>ng/L</td>
</tr>
<tr>
<td>Temperature</td>
<td>degrees Fahrenheit</td>
<td>°F</td>
<td></td>
<td>milligrams per kg (ppm)</td>
<td>mg/kg</td>
</tr>
<tr>
<td></td>
<td>degrees Celsius</td>
<td>°C</td>
<td></td>
<td>micrograms per g (ppm)</td>
<td>µg/g</td>
</tr>
<tr>
<td>Mass</td>
<td>gram</td>
<td>g</td>
<td></td>
<td>micrograms per mL (ppm)</td>
<td>µg/mL</td>
</tr>
<tr>
<td></td>
<td>kilogram</td>
<td>kg</td>
<td></td>
<td>milliliters per mL</td>
<td>mL/L</td>
</tr>
<tr>
<td></td>
<td>milligram</td>
<td>mg</td>
<td></td>
<td>microcuries per mL</td>
<td>µCi/mL</td>
</tr>
<tr>
<td></td>
<td>microgram</td>
<td>µg</td>
<td></td>
<td>picocuries per L</td>
<td>pCi/L</td>
</tr>
<tr>
<td></td>
<td>nanogram</td>
<td>ng</td>
<td></td>
<td>microcuries per g</td>
<td>µCi/g</td>
</tr>
<tr>
<td></td>
<td>pound</td>
<td>lb</td>
<td></td>
<td>becquerels per L</td>
<td>Bq/L</td>
</tr>
<tr>
<td></td>
<td>tonne (metric ton)</td>
<td>t</td>
<td></td>
<td>nephelometric turbidity units</td>
<td>NTU</td>
</tr>
<tr>
<td></td>
<td>ton, short</td>
<td>T</td>
<td></td>
<td>standard units (pH)</td>
<td>SU</td>
</tr>
<tr>
<td>Radioactivity</td>
<td>curie</td>
<td>Ci</td>
<td>Flow rate</td>
<td>gallons per day</td>
<td>gpd</td>
</tr>
<tr>
<td></td>
<td>millicurie</td>
<td>mCi</td>
<td></td>
<td>gallons per minute</td>
<td>gpm</td>
</tr>
<tr>
<td></td>
<td>microcurie</td>
<td>µCi</td>
<td></td>
<td>million gallons per day</td>
<td>mgd</td>
</tr>
<tr>
<td></td>
<td>nanocurie</td>
<td>nCi</td>
<td></td>
<td>cubic feet per minute</td>
<td>cfm</td>
</tr>
<tr>
<td></td>
<td>picocurie</td>
<td>pCi</td>
<td></td>
<td>liters per minute</td>
<td>lpm</td>
</tr>
<tr>
<td></td>
<td>becquerel</td>
<td>Bq</td>
<td></td>
<td>meters per second</td>
<td>m/sec</td>
</tr>
</tbody>
</table>

TABLE UI-3
Conversion Factors Used in this ASER

<table>
<thead>
<tr>
<th>To convert from</th>
<th>to</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>miles</td>
<td>kilometers</td>
<td>1.609344</td>
</tr>
<tr>
<td>feet</td>
<td>meters</td>
<td>0.3048</td>
</tr>
<tr>
<td>inches</td>
<td>centimeters</td>
<td>2.54</td>
</tr>
<tr>
<td>acres</td>
<td>hectares</td>
<td>0.4046873</td>
</tr>
<tr>
<td>pounds</td>
<td>kilograms</td>
<td>0.45359237</td>
</tr>
<tr>
<td>gallons</td>
<td>liters</td>
<td>3.785412</td>
</tr>
<tr>
<td>curies</td>
<td>becquerels</td>
<td>3.7E+10</td>
</tr>
<tr>
<td>rad</td>
<td>gray</td>
<td>0.01</td>
</tr>
<tr>
<td>rem</td>
<td>sievert</td>
<td>0.01</td>
</tr>
</tbody>
</table>
The number of significant digits reported depends on the precision of the measurement technique. Integer counts are reported without rounding. Calculated values are customarily reported to three significant figures. Dose estimates are usually reported to two significant figures. All calculations are completed before values are rounded.

Limits Applicable to Environmental Media

Dose Standards. The two dose standards against which releases at the WVDP are assessed are those established by EPA for air emissions and that established by DOE regarding all exposure modes from DOE activities.

Radiological air emissions other than radon from DOE facilities are regulated by EPA under the NESHAP regulation (40 CFR 61, Subpart H), which establishes a standard of 10 mrem/year effective dose equivalent to any member of the public. Compliance with these regulations can be demonstrated by direct ambient air measurement or by modeling. See “CAP88-PC Computer Code” in inset.

DOE Order 458.1 sets the DOE primary standard of 100 mrem/year effective dose equivalent to members of the public considering all exposure modes from DOE activities. (Currently there are no EPA standards establishing limits on the radiation dose to members of the public from liquid effluents except for drinking water.) For community water supplies, EPA has established a drinking water limit of 4-mrem/year (0.04-mSv/year) (40 CFR Parts 141, National Primary Drinking Water Regulations). However, there are no community drinking water supplies drawn from groundwater downgradient of the site or from surface waters within the Cattaraugus Creek drainage basin downstream of the WVDP. The WVDP on-site drinking water, currently supplied by a deep bedrock groundwater aquifer, is a non-transient, non-community water supply system that is subject to site-specific drinking water monitoring regulated by the NYSDOH. Applicable Maximum Contaminant Limits (MCLs) for the WVDP permitted drinking water system are set by NYS Sanitary Code (10 NYCRR 5-1). Radiological monitoring requirements are established in the CCHD/NYSDOH approved WVDP drinking water monitoring plan.

DOE DCS. A DCS is defined as the concentration of a radionuclide in air or water that, under conditions of continuous exposure by one exposure mode (i.e., ingestion of water, immersion in air, or inhalation) for one year, would result in an EDE of 100 mrem (1 mSv) to a “reference man” (DOE Order 458.1). DCSs for radionuclides measured at the WVDP are listed in Table UI-4. At the WVDP, DCSs are used as a screening tool for evaluating liquid effluents and airborne emissions. (DCSs are not used to estimate dose.)

CAP88-PC Computer Code

The WVDP ASER summarizes the airborne radioactivity released (see Appendix C) and the effect from those releases (Chapter 3) in a manner consistent with that required by EPA. The computer code Clean Air Act Assessment Package-1988 for personal computers (CAP88-PC) can be used to perform radiation dose and risk calculations from WVDP airborne releases. The CAP88-PC model is used regularly for risk evaluation and planning when considering site work activities with the potential to release airborne radioactivity. According to EPA website from whence the most recent release can be obtained, any approved version of the code can be used for compliance.

Version 4.0 of CAP88-PC (Trinity Engineering Associates, Inc., most recent release, February 2015) was approved by EPA for use in demonstrating compliance with the 10-mrem/year NESHAP standard. Version 3.0 incorporated updated scientific methods to calculate radiation dose and risk, and also considers age, gender, and sensitivity of various human organs to radiation factors not considered in earlier versions. The latest versions of the model also calculate how long radioactive material will remain in a particular organ or system. Dose and risk estimates summarized in the ASER from using earlier versions such as CAP88-PC Version 2.0 are slightly different than later versions, even if the radioactivity released from the WVDP and the meteorology both remain constant. However, all historical dose estimates are far below the compliance limit.
SPDES Permit Requirements. On July 1, 2011, a modified SPDES permit became effective for the WVDP, and requirements of the CY 2011 SPDES permit are summarized in Appendix B-1. The site’s SPDES permit defines points where sampling must be conducted, sampling frequency, the type of samples to be collected, nonradiological constituents for which samples must be analyzed, and the limits applicable to these constituents. Results are reported monthly to the NYSDEC in DMRs.

Radionuclides are not regulated under the SPDES permit. However, special requirements in the permit specify that the concentration of radionuclides in the discharge is subject to requirements of DOE Order 458.1, “Radiation Protection of the Public and the Environment,” and are reported in the ASER.

Water Quality Classifications, Standards, and Limits for Ambient Water. The objective of the Clean Water Act (CWA) of 1972 is to restore and maintain the integrity of the nation’s waters and ensure that, wherever attainable, waters be made useful for fishing and swimming. To achieve this goal, NYS is delegated with authority under Sections 118, 303, and 510 of the CWA to (1) classify and designate the best uses for receiving waters, such as streams and rivers, within its jurisdiction, and (2) establish and assign water quality standards — goals for achieving the designated best uses for these classified waters.

The definitions for best usage classification of New York’s jurisdictional waters and the water quality standard goals for these classifications are provided in 6 NYCRR Parts 701–704. Mapping of the Cattaraugus Creek drainage basin and assignment of best usage designations and classification to each receiving water segment within this drainage basin are described in 6 NYCRR Part 838.

According to these regulations, Franks Creek, Quarry Creek, and segments of Buttermilk Creek under the influence of water effluents from the WVDP are identified as Class “C” receiving waters with a minimum designated best usage for fishing with conditions suitable for fish propagation and survival.

Cattaraugus Creek, in the immediate downstream vicinity of the WNYNSC, is identified as a Class “B” receiving water with best designated usages for swimming and fishing. All fresh (nonsaline) groundwaters within New York are assigned a “GA” classification with a designated best usage as a potable water supply source.

Refer to Appendix B for a summary of the water quality standards, guidelines, and maximum contaminant levels (MCLs) assigned to these water classifications for those constituents that are included in the WVDP environmental monitoring program for ambient water.

Potable Water Standards. The CWA establishes water quality goals for fishing and swimming. The NYSDOH and EPA have further classified its jurisdictional waters and established ambient water standards, guidelines, and MCLs or MCL goals to achieve the objectives of the Safe Drinking Water Act. Primary drinking water standards, expressed as MCLs or MCL goals, provide for enforceable health based limits. See Appendix B-1 for a summary of these levels.

Soil and Sediment Concentration Guidelines. Contaminants in soil are potential sources for contamination of groundwater, surface water, ambient air, and plants and animals. Routine soil and sediment sampling is performed every five years.

The NRC and the EPA, in a 2002 memorandum of understanding pertaining to decommissioning and decontamination of contaminated sites, agreed upon concentrations of residual radioactivity in soil that would trigger consultation between the two agencies. Consultation “trigger” levels for radioactive contamination for nuclides applicable to the WVDP in both residential and industrial soil are reported in the ASER every fifth year with the soil and sediment sampling results for that year.

In 2006, the NRC, in a decommissioning guidance document (NUREG-1757, Vol. 2, 2006), provided concentration screening values for common radionuclides in soil that could result in a dose of 25 mrem/year.

In 2009, soil cleanup goals were developed from site-specific data for the “Phase 1 Decommissioning Plan for the WVDP,” Rev. 2, December 2009. These criteria are presented in Table 5-14 of the DP.

Evaluation of Monitoring Data with Respect to Limits

Monitoring data for this report were evaluated against the limits presented in Table UI-4, and in the Appendices. Those locations with results exceeding the limits are listed in Chapter 2, Table 2-4, and in Chapter 4, Table 4-9.
TABLE UI-4
U.S. Department of Energy Derived Concentration Standards (DCSs)\(^a\)
for Inhaled Air or Ingested Water (µCi/mL)

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Half-life (years)(^b)</th>
<th>DCSs in Inhaled Air(^c)</th>
<th>DCSs in Ingested Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha(^d)</td>
<td>NA</td>
<td>8.1E-14 (as Pu-239/240)</td>
<td>9.8E-08 (as U-232)</td>
</tr>
<tr>
<td>Gross Beta(^d)</td>
<td>NA</td>
<td>1.0E-10 (as Sr-90)</td>
<td>1.1E-06 (as Sr-90)</td>
</tr>
<tr>
<td>Tritium (H-3)</td>
<td>1.23E+01</td>
<td>2.1E-07(^d)</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>Carbon-14 (C-14)</td>
<td>5.70E+03</td>
<td>6.1E-07(^d)</td>
<td>6.2E-05</td>
</tr>
<tr>
<td>Potassium-40 (K-40)</td>
<td>1.25E+09</td>
<td>2.6E-10</td>
<td>4.8E-06</td>
</tr>
<tr>
<td>Cobalt-60 (Co-60)</td>
<td>5.27E+00</td>
<td>3.6E-10</td>
<td>7.2E-06</td>
</tr>
<tr>
<td>Strontium-90 (Sr-90)</td>
<td>2.89E+01</td>
<td>1.0E-10</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>Technetium-99 (Tc-99)</td>
<td>2.11E+05</td>
<td>9.2E-10</td>
<td>4.4E-05</td>
</tr>
<tr>
<td>Iodine-129 (I-129)</td>
<td>1.57E+07</td>
<td>1.0E-10</td>
<td>3.3E-07</td>
</tr>
<tr>
<td>Cesium-137 (Cs-137)</td>
<td>3.00E+01</td>
<td>8.8E-10</td>
<td>3.0E-06</td>
</tr>
<tr>
<td>Europium-154 (Eu-154)</td>
<td>8.59E+00</td>
<td>7.5E-11</td>
<td>1.5E-05</td>
</tr>
<tr>
<td>Uranium-232 (U-232)</td>
<td>6.89E+01</td>
<td>4.7E-13</td>
<td>9.8E-08</td>
</tr>
<tr>
<td>Uranium-233 (U-233)</td>
<td>1.59E+05</td>
<td>1.0E-12</td>
<td>6.6E-07</td>
</tr>
<tr>
<td>Uranium-234 (U-234)</td>
<td>2.46E+05</td>
<td>1.1E-12</td>
<td>6.8E-07</td>
</tr>
<tr>
<td>Uranium-235 (U-235)</td>
<td>7.04E+08</td>
<td>1.2E-12</td>
<td>7.2E-07</td>
</tr>
<tr>
<td>Uranium-236 (U-236)</td>
<td>2.34E+07</td>
<td>1.2E-12</td>
<td>7.2E-07</td>
</tr>
<tr>
<td>Uranium-238 (U-238)</td>
<td>4.47E+09</td>
<td>1.3E-12</td>
<td>7.5E-07</td>
</tr>
<tr>
<td>Plutonium-238 (Pu-238)</td>
<td>8.77E+01</td>
<td>8.8E-14</td>
<td>1.5E-07</td>
</tr>
<tr>
<td>Plutonium-239 (Pu-239)</td>
<td>2.41E+04</td>
<td>8.1E-14</td>
<td>1.4E-07</td>
</tr>
<tr>
<td>Plutonium-240 (Pu-240)</td>
<td>6.56E+03</td>
<td>8.1E-14</td>
<td>1.4E-07</td>
</tr>
<tr>
<td>Americium-241 (Am-241)</td>
<td>4.32E+02</td>
<td>9.7E-14</td>
<td>1.7E-07</td>
</tr>
</tbody>
</table>

\(^a\) DCSs are defined as the concentration of a radionuclide that, under conditions of continuous exposure for one year by one exposure mode, would result in an effective dose equivalent of 100 mrem (1mSv).

\(^c\) The DCS selection for air utilized the default type lung absorption rates for each nuclide, based on guidance from ICRP-72 for particulate aerosols when no specific chemical information is available.

\(^d\) Because there are no DCSs for gross alpha and gross beta concentrations, the values for the most restrictive alpha and beta emitters at the WVDP (Pu-239/240 for alpha in air, U-232 for alpha in water, and Sr-90 for both air and water gross beta concentrations) are used as a conservative basis for comparison at locations for which there are no radionuclide-specific data, in which case a more appropriate DCS may be applied.

\(^e\) The DCS for tritium represents the water vapor standard, selected from Table 5, DOE-STD-1196-2011.

\(^f\) The DCS for carbon-14 represents the dioxide chemical form, selected from Table 5, DOE-STD-1196-2011.
GLOSSARY

A

accuracy - The degree of agreement between a measurement and its true value. The accuracy of a data set is assessed by evaluating results from standards or sample spikes containing known quantities of an analyte.

action plan - An action plan addresses assessment findings and root causes that have been identified in an audit or an assessment report. It is intended to define specific actions that the responsible group will undertake to remedy deficiencies. The plan includes a timetable and resource requirements for implementation of the planned activities.

aquifer - A water-bearing unit of permeable rock or soil that will yield water in usable quantities via wells. Confined aquifers are bounded above and below by less permeable layers. Groundwater in a confined aquifer may be under a pressure greater than the atmospheric pressure. Unconfined aquifers are bounded below by less permeable material, but are not bounded above. The pressure on the groundwater at the surface of an unconfined aquifer is equal to that of the atmosphere.

aquitard - A low-permeability geologic unit that can store groundwater and can transmit groundwater at a very slow rate.

as low as reasonably achievable (ALARA) - An approach to radiation protection that advocates controlling or managing exposures (both individual and collective) to the work force and the general public and releases of radioactive material to the environment as low as social, technical, economic, practical, and public policy considerations permit. As used in United States (U.S.) Department of Energy (DOE) Order 458.1, ALARA is not a dose limit but, rather, a process that has as its objective the attainment of dose levels as far below the applicable limits of the order as practicable.

B

background radiation - Natural and man-made radiation such as: cosmic radiation, radiation from naturally radioactive elements, and radiation from commercial sources and medical procedures.

becquerel (Bq) - A unit of radioactivity equal to one nuclear transformation per second.

biweekly - Occurring at a frequency of every two weeks.

categorical exclusion (CX) - A proposed action that the DOE has determined does not individually or cumulatively have a significant effect on the human environment. See 10 Code of Federal Regulations (CFR) 1021.410.

Class A, B, and C low-level waste - Waste classifications from the Nuclear Regulatory Commission’s 10 CFR Part 61 rule. Maximum concentration limits are set for specific isotopes. Class A waste disposal is minimally restricted with respect to the form of the waste. Class B waste must meet more rigorous requirements to ensure physical stability after disposal. Higher radionuclide concentration limits are set for Class C waste (the most radioactive), which also must meet physical stability requirements. Moreover, special measures must be taken at the disposal facility to protect against inadvertent intrusion.

compliance findings - Conditions that may not satisfy applicable environmental or safety and health regulations, DOE orders and memoranda, enforcement actions, agreements with regulatory agencies, or permit conditions.

confidence interval - The range of values within which some parameter may be expected to lie with a stated degree of confidence. For example, a value of 10 with an uncertainty of 5 calculated at the 95% confidence level (10±5) indicates there is a 95% probability that the true value of that parameter lies between 5 and 15.
consistency - The condition of showing steady conformity to practices. In the environmental monitoring program, approved procedures are in place so that data collection activities are carried out in a uniform manner to minimize variability.

Core Team - The “core team approach” is a formalized, consensus-based process in which those individuals with decision-making authority, including the DOE, the U.S. Environmental Protection Agency (EPA), and State remedial project managers, work together to reach agreement on key remediation decisions (DOE/EH-413-9911, October 1999). In August 2006, the DOE-West Valley Demonstration Project (DOE-WVDP) requested that the New York State Department of Health (NYSDOH), the U.S. Nuclear Regulatory Commission (NRC), the EPA (region 2), the New York State Department of Environmental Conservation (NYSDEC), and the New York State Energy Research and Development Authority (NYSERDA) participate in a collaborative process (i.e., Core Team) to resolve technical issues associated with the “Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center” (DEIS).

critical receptor - A hypothetical off-site individual who it is estimated would receive the highest radiation dose from a potential air effluent release based on ambient air radioactivity measurements.

cosmic radiation - High-energy subatomic particles from outer space that bombard the earth’s atmosphere. Cosmic radiation is part of natural background radiation.

curie (Ci) - A unit of radioactivity equal to 37 billion (3.7 \times 10^{10}) nuclear transformations per second.

data set - A group of data (e.g., factual information such as measurements or statistics) used as a basis for reasoning, discussion, or calculation.

decay (radioactive) - Disintegration of the nucleus of an unstable nuclide by spontaneous emission of charged particles and/or photons or by spontaneous fission.

derived concentration standard (DCS) - The concentration of a radionuclide in air and water that, under conditions of continuous human exposure for one year by one exposure mode (i.e., ingestion of water, inhalation, or immersion in a gaseous cloud), would result in an effective dose equivalent of 100 millirem (mrem) (1 millisievert [mSv]). See Table UI-4 in the “Useful Information” section of this report.

detection limit or level (DL) - This term may also be expressed as “method detection limit” (MDL). The smallest amount of a substance that can be distinguished in a sample by a given measurement procedure at a given confidence level. (See lower limit of detection.)

dispersion (airborne) - The process whereby particulates or gases are spread and diluted in air as they move away from a source.

dispersion (groundwater) - The process whereby solutes are spread or mixed as they are transported by groundwater as it moves through the subsurface.

dosimeter - A portable device for measuring the total accumulated exposure to ionizing radiation.

downgradient - The direction of water flow from a reference point to a selected point of interest at a lower elevation than the reference point. (See gradient.)
effective dose - (See effective dose equivalent under radiation dose.)
effluent - Any treated or untreated air emission or liquid discharge to the environment.
effluent monitoring - Sampling or measuring specific liquid or gaseous effluent streams for the presence of pollutants to determine compliance with applicable standards, permit requirements, and administrative controls.
environmental assessment (EA) - An evaluation that provides sufficient evidence and analysis for determining whether an environmental impact statement is required or a finding of no significant impact should be issued. See 10 CFR 1021.
environmental impact statement (EIS) - A detailed statement that includes the environmental impact of the proposed action, any adverse environmental effects that cannot be avoided should the proposal be implemented, and alternatives to the proposed action. Detailed information may be found in Section 10 CFR 1021.
environmental management system (EMS) - The systematic application of business management practices to environmental issues, including defining the organizational structure, planning for activities, identifying responsibilities, and defining practices, procedures, processes, and resources.

environmental monitoring - The collection and analysis of samples or the direct measurement of environmental media. Environmental monitoring consists of two major activities: effluent monitoring and environmental surveillance.

environmental surveillance - The collection and analysis of samples or the direct measurement of air, water, soil, foodstuff, and biota in the environs of a facility of interest to determine compliance with applicable standards and to detect trends and environmental pollutant transport.

exposure - The subjection of a target (usually living tissue) to radiation.

gamma isotopic (also gamma scan) - An analytical method by which the quantity of several gamma ray-emitting radioactive isotopes may be determined simultaneously. Typical nuclear fuel cycle isotopes determined by this method include, but are not limited to, cobalt-60, zirconium-95, ruthenium-106, silver-110m, antimony-125, cesium-134, cesium-137, and europium-154. Naturally occurring isotopes for which samples may be analyzed are beryllium-7, potassium-40, radium-224, and radium-226.

gradient - Change in value of one variable with respect to another variable, such as a vertical change over a horizontal distance.

groundwater - Subsurface water in the pore spaces and fractures of soil and bedrock units.

half-life - The time in which half the atoms of a radionuclide disintegrate into another nuclear form. The half-life may vary from a fraction of a second to billions of years.

hazardous waste - A waste or combination of wastes that because of quantity, concentration, or physical, chemical, or infectious characteristics may: a) cause or significantly contribute to an increase in mortality or an increase in serious irreversible or incapacitating reversible illness; or (b) pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, disposed of, or otherwise managed.

high-level radioactive waste (HLW) - The highly radioactive waste material that results from the reprocessing of spent nuclear fuel, including liquid waste produced directly in reprocessing and solid waste derived from the liquid, that contains a combination of transuranic waste and fission products in concentrations sufficient to require permanent isolation. (See also transuranic waste.)

hydraulic conductivity - The ratio of flow velocity to driving force for viscous flow under saturated conditions of a specified liquid in a porous medium; the ratio describing the rate at which water can move through a permeable medium.

integrated safety management system (ISMS) - A process that describes the programs, policies, and procedures used at the WVDP to ensure the establishment of a safe workplace for the employees, the public, and the environment. The guiding principles of ISMS are line management responsibility for safety; clear roles and responsibilities; competence commensurate with responsibilities; balanced priorities; identification of safety standards and requirements; hazard controls; and operations authorization.

interim status - The status of any currently existing facility that becomes subject to the requirement to have a Resource Conservation and Recovery Act (RCRA) permit.
because of a new statutory or regulatory amendment to RCRA.

ion - An atom or group of atoms with an electric charge.

ion exchange - The reversible exchange of ions contained in solution with other ions that are part of the ion-exchange material.

ISO (International Organization for Standardization) - An international network of nongovernmental standards institutes that forms a bridge between the public and private sectors, and is the largest standards organization in the world. ISO enables a consensus to be reached on solutions that meet both the requirements of business and the broader needs of society.

ISO 14001:2004 - A standard for an EMS, which requires an organization to:

- Determine the organization’s impact on the environment and relevant regulations to the operations of the business;

- Create a plan to control the organization’s processes to minimize the environmental impact;

- Monitor the effectiveness of the system at meeting objectives, as well as legal and other; and

- Continually analyze the results and improve the organization’s systems.

isotope - Different forms of the same chemical element that are distinguished by having the same number of protons but a different number of neutrons in the nucleus. An element can have many isotopes. For example, the three isotopes of hydrogen are protium, deuterium, and tritium, with one, two, and three neutrons in the nucleus, respectively.

K

knickpoint - A term in geomorphology to describe a location in a river or channel where there is a sharp change in channel slope resulting from differential rates of erosion.

L

land disposal restrictions (LDR) - Regulations promulgated by the EPA (and by NYSDEC in New York State) governing the land disposal of hazardous wastes. The wastes must be treated using the best demonstrated available technology or must meet certain treatment standards before being disposed.

lower limit of detection (LLD) - The lowest limit of a given parameter that an instrument is capable of detecting. A measurement of analytical sensitivity.

low-level radioactive waste (LLW) - Radioactive waste not classified as high-level radioactive waste, transuranic waste, spent fuel, or uranium mill tailings. (See Class A, B, and C low-level waste.)

maximally exposed individual (MEI) - Hypothetical on-site (occupational) or off-site (nonoccupational) individual who, because of realistically assumed proximity, activities, and living habits, would receive the highest radiation dose, taking into account all pathways, from a given event, process, or facility.

maximally exposed off-site individual (MEOSI) - Member of the general off-site public at a known residence who would receive the highest dose from an effluent release.

mean - The average value of a series of measurements.

metric ton - (See ton, metric.)

millirem (mrem) - A unit of radiation dose equivalent that is equal to one one-thousandth of a rem. An individual member of the public can receive up to 100 mrem per year according to DOE standards. This limit does not include the roughly 310 mrem, on average, that people in the U.S. receive annually from natural background radiation.

minimum detectable concentration (MDC) or method detection limit (MDL) - Depending on the sample medium, the smallest amount or concentration of a radioactive or nonradioactive analyte that can be reliably detected using a specific analytical method. Calculations of the minimum detectable concentrations are based on the lower limit of detection.

mixed waste (MW) - A waste that is both radioactive and RCRA hazardous.

n-Dodecane/tributyl phosphate - An organic solution composed of 30% tributyl phosphate (TBP) dissolved in n-dodecane used to first separate the uranium and
plutonium from the fission products in dissolved nuclear fuel and then to separate the uranium from the plutonium.

neutron - An electrically neutral subatomic particle in the baryon family with a mass 1,839 times that of an electron, stable when bound in an atomic nucleus, and having a mean lifetime of just under 15 minutes as a free particle.

notice of violation (NOV) - Generally, an official notification from a regulatory agency of noncompliance with permit requirements. (An example would be a letter of notice from a regional water engineer in response to an instance of significant noncompliance with a State Pollutant Discharge Elimination System [SPDES] permit.)

nucleus - The positively-charged central region of an atom, made up of protons and neutrons and containing almost all of the mass of the atom.

outfall - The discharge end of a drain or pipe that carries wastewater or other liquid effluents into a ditch, pond, or river.

parameter - Any of a set of physical properties whose values determine the characteristics or behavior of something (e.g., temperature, pressure, density of air). In relation to environmental monitoring, a monitoring parameter is a constituent of interest. Statistically, the term “parameter” is a calculated quantity, such as a mean or variance, that describes a statistical population.

particulates - Solid particles and liquid droplets small enough to become airborne.

person-rem - The sum of the individual radiation dose equivalents received by members of a certain group or population. It may be calculated by multiplying the average dose per person by the number of persons exposed. For example, a thousand people each exposed to one millirem would have a collective dose of one person-rem.

plume - The distribution of a pollutant in air or water after being released from a source.

practical quantitation limits (PQLs) - The PQL is the minimum concentration of an analyte that can be measured within specified limits of precision during routine laboratory operations (NYSDEC, 1991).

precision - The degree of reproducibility of a measurement under a given set of conditions. Precision in a data set is assessed by evaluating results from duplicate field or analytical samples.

proton - A stable, positively-charged subatomic particle in the baryon family with a mass 1,836 times that of an electron.

pseudo-monitoring point - A theoretical monitoring location rather than an actual physical location; a calculation based on analytical test results of samples obtained from other associated, tributary, monitored locations. (Point 116 at the WVDP is classified as a “pseudo” monitoring point because samples are not physically collected at that location. Rather, using analytical results from samples collected from “real” upstream outfall locations, compliance with the total dissolved solids limit in the WVDP’s SPDES permit is calculated for this theoretical point.)

quality factor (QF) - The extent of tissue damage caused by different types of radiation of the same energy. The greater the damage, the higher the quality factor. More specifically, the factor by which absorbed doses are multiplied to obtain a quantity that indicates the degree of biological damage produced by ionizing radiation. (See radiation dose.) The factor is dependent upon radiation type (alpha, beta, gamma, or x-ray) and exposure (internal or external).

rad - Radiation absorbed dose. One hundred ergs of energy absorbed per gram of solid material.

radiation - The process of emitting energy in the form of rays or particles that are thrown off by disintegrating atoms. The rays or particles emitted may consist of alpha, beta, or gamma radiation.

 alpha radiation - The least penetrating type of radiation. Alpha radiation (similar to a helium nucleus) can be stopped by a sheet of paper or the outer dead layer of skin.

 beta radiation - Electrons emitted from a nucleus during fission and nuclear decay. Beta radiation can be stopped by an inch of wood or a thin sheet of aluminum.
gamma radiation - A form of electromagnetic, high-energy radiation emitted from a nucleus. Gamma rays are essentially the same as x-rays and require heavy shielding such as lead, concrete, or steel to be effectively attenuated.

internal radiation - Radiation originating from a source within the body as a result of the inhalation, ingestion, or implantation of natural or man-made radionuclides in body tissues.

radiation dose:

absorbed dose - The amount of energy absorbed per unit mass in any kind of matter from any kind of ionizing radiation. Absorbed dose is measured in rads or grays.

collective dose equivalent - The sum of the dose equivalents for all the individuals comprising a defined population. The per capita dose equivalent is the quotient of the collective dose equivalent divided by the population. The unit of collective dose equivalent is person-rem or person-sievert.

collective effective dose equivalent - The sum of the effective dose equivalents for the individuals comprising a defined population. Units of measurement are person-rem or person-sievert. The per capita effective dose equivalent is obtained by dividing the collective dose equivalent by the population. Units of measurement are rem or sievert.

committed dose equivalent - A measure of internal radiation. The predicted total dose equivalent to a tissue or organ over a 50-year period after a known intake of a radionuclide into the body. It does not include contributions from sources of external penetrating radiation. Committed dose equivalent is measured in rem or sievert.

committed effective dose equivalent - The sum of the committed dose equivalents to various tissues in the body, each multiplied by the appropriate weighting factor. Committed effective dose equivalent is measured in rem or sievert.

total effective dose equivalent - The summation of the products of the dose equivalent received by specified tissues of the body and the appropriate weighting factors. It includes the dose from radiation sources internal and/or external to the body. The effective dose equivalent is expressed in units of rem or sievert.

radioactivity - A property possessed by some elements (such as uranium) whereby alpha, beta, or gamma rays are spontaneously emitted.

radioisotope - A radioactive isotope of a specified element. Carbon-14 is a radioisotope of carbon. Tritium is a radioisotope of hydrogen. (See isotope.)

radionuclide - A radioactive nuclide. Radionuclides are variations (isotopes) of elements. They have the same number of protons and electrons but different numbers of neutrons, resulting in different atomic masses. There are hundreds of known nuclides, both man-made and naturally occurring.

reference man - A hypothetical aggregation of human physical and physiological characteristics arrived at by international consensus. These characteristics may be used by researchers and public health workers to standardize results of experiments and to relate biological insult to a common base.

rem - An acronym for Roentgen Equivalent Man. A unit of radiation exposure that indicates the potential effect of radiation on human cells.

remote-handled waste - At the WVDP, waste that has an external surface dose rate that exceeds 100 millirem per hour or a high level of alpha and/or beta surface contamination and, therefore, must be handled in such a manner that it does not come into physical contact with workers.

roentgen - A unit of exposure to ionizing radiation. It is that quantity of gamma or x-rays required to produce ions carrying one electrostatic unit of electrical charge in one cubic centimeter of dry air under standard conditions. The unit is named after Wilhelm Roentgen, German scientist who discovered x-rays in 1895.

self-assessment - Appraisals of work at the WVDP by individuals, groups, or organizations responsible for overseeing and/or performing the work. Self-assessments are intended to provide an internal review of performance to determine that specific functional areas are in programmatic and site-specific compliance with applicable DOE directives, WVDP procedures, and regulations.
finding - A direct and significant violation of applicable DOE, regulatory, or other procedural or programmatic requirements. A finding requires documented corrective action.

observation - A condition that, while not a direct and significant violation of applicable DOE, regulatory, or other procedural or programmatic requirements, could result in a finding if not corrected. An observation requires documented corrective action.

good practice - A statement of proficiency or confirmed excellence worthy of documenting.

sievert - A unit of dose equivalent from the International System of Units (Systeme Internationale). Equal to one joule per kilogram.

solid waste management unit (SWMU) - Any discernible unit at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or hazardous waste. Such units include any area at a facility at which solid wastes have been routinely and systematically released or created. (See also super solid waste management unit.)

spent fuel - Nuclear fuel that has been used in a nuclear reactor; this fuel contains uranium, activation products, fission products, and plutonium.

spill - A spill or release is defined as “any spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or otherwise disposing of substances from the ordinary containers employed in the normal course of storage, transfer, processing, or use,” outside of the intended procedural action.

stakeholder - A person or group that has an investment, share, or interest in something. At the WVDP stakeholders include Project management, scientists, other employees, politicians, regulatory agencies, local and national interest groups, and members of the general public.

standard deviation - An indication of the dispersion of a set of results around their average.

super solid waste management unit (SSWMU) - Individual solid waste management units that have been grouped and ranked into larger units – super solid waste management units – because some individual units are contiguous or so close together as to make monitoring of separate units impractical. This terminology is unique to the WVDP, and is not an official regulatory term. (See also solid waste management unit.)

surface water - Water that is exposed to the atmospheric conditions of temperature, pressure, and chemical composition at the surface of the earth.

surveillance - The act of monitoring or observing a process or activity to verify conformance with specified requirements.

thermoluminescent dosimeter (TLD) - A device that luminesces upon heating after being exposed to radiation. The amount of light emitted is proportional to the amount of radiation to which the luminescent material has been exposed.

ton, metric (also tonne) - A unit of mass equal to 1,000 kilograms. (See also Table UI-2, “Units of Measure Used in This ASER.”)

ton (short ton) - A unit of weight equal to 2,000 pounds or 907.1847 kilograms. (See also Table UI-2, “Units of Measure Used in This ASER.”)

transuranic (TRU) waste - Waste containing transuranic elements, that is, those elements with an atomic number greater than 92, including neptunium, plutonium, americium, and curium.

universal wastes - Wastes subject to special management provisions that are intended to ease the management burden and facilitate recycling of such materials. Four types of waste are currently covered under the universal waste regulations: hazardous waste batteries, hazardous waste pesticides that are either recalled or collected in waste pesticide collection programs, hazardous waste thermostats, and hazardous waste lamps.

upgradient - Referring to the flow of water or air, “upgradient” is analogous to upstream. Upgradient is a point that is “before” an area of study and that is used as a baseline for comparison with downstream or downgradient data. (See gradient and downgradient.)

vitrification - A waste treatment process that encapsulates or immobilizes radioactive wastes in a glassy
matrix to prevent them from reacting in disposal sites. Vitrification involves adding chemicals, glass formers, and waste to a heated vessel and melting the mixture into a glass that is then poured into a canister.

W

watershed - The area contained within a drainage divide above a specified point on a stream or river.

water table - The upper surface in a body of groundwater; the surface in an unconfined aquifer or confining bed at which the pore water pressure is equal to atmospheric pressure.

well point - A small-diameter well that is hammer-driven rather than placed into a pre-drilled borehole.

X

x-ray - Penetrating electromagnetic radiations having wave lengths shorter than those of visible light. They are usually produced by bombarding a metallic target with fast electrons in a high vacuum. In nuclear reactions it is customary to refer to photons originating in the nucleus as gamma rays and those originating in the extranuclear part of the atom as x-rays. These rays are sometimes called Roentgen rays after their discoverer, W.C. Roentgen.
ACRONYMS AND ABBREVIATIONS

Note: For abbreviations of units of measure, see Table UI-2, “Units of Measure Used in This ASER,” in the “Useful Information” section.

| A |CX - Categorical Exclusion
<table>
<thead>
<tr>
<th></th>
<th>CY - Calendar Year</th>
</tr>
</thead>
</table>
| ACM - Asbestos-Containing Material
| AEA - Atomic Energy Act
| ALARA - As Low As Reasonably Achievable
| alpha-BHC - alpha-hexachlorocyclohexane
| ASER - Annual Site Environmental Report
| ASME - American Society of Mechanical Engineers
| AST - Aboveground Storage Tank |
| B |BCG - Biota Concentration Guide
| | BOD₅ - Biological Oxygen Demand (5-day)
| | BOSF - Balance of Site Facilities
| | Bq - Becquerels |
| C |CAA - Clean Air Act
| | CBS - Chemical Bulk Storage
| | CCHD - Cattaraugus County Health Department
| | CD - Compact Disk
| | CDDL - Construction and Demolition Debris Landfill
| | CEDE - Committed Effective Dose Equivalent
| | CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act
| | CFL - Compact Fluorescent Lamps
| | CFMT - Concentrator Feed Makeup Tank
| | CFR - Code of Federal Regulations
| | CHBWV - CH2M HILL BWXT West Valley, LLC
| | CMS - Corrective Measures Study
| | CSAP - Characterization Sampling and Analysis Plan
| | CSPF - Container Sorting and Packaging Facility
| | CSRF - Contact Size-Reduction Facility
| | CSS - Cement Solidification System
| | CWA - Clean Water Act |
| D |D&D - Decontamination and Decommissioning
| | DCG - Derived Concentration Guide
| | DCS - Derived Concentration Standard
| | DEIS - Draft Environmental Impact Statement
| | DMR - Discharge Monitoring Report
| | DO - Dissolved Oxygen
| | DOE - (U.S.) Department of Energy
| | DOE-HQ - Department of Energy, Headquarters Office
| | DOE-WVDP - Department of Energy, West Valley Demonstration Project (title as of June 2006)
| | DP - Decommissioning Plan |
| E |EA - Environmental Assessment
| | ECL - (New York State) Environmental Conservation Law
| | ECS - Environmental Compliance Summary
| | EDE - Effective Dose Equivalent
| | EIS - Environmental Impact Statement
| | ELAP - Environmental Laboratory Approval Program
| | EMS - Environmental Management System
| | EO - Executive Order
| | EPA - (U.S.) Environmental Protection Agency
| | EPCRA - Emergency Planning and Community Right-to-Know Act
| | EPEAT - Electronic Product Environmental Assessment Tool
| | ERO - Emergency Response Organization
| | ES - Environmental Services (within Regulatory Strategy Group)
| | ESRB - Executive Safety Review Board |

WVDP Annual Site Environmental Report - Calendar Year 2014
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>F</th>
<th>LWTS - Liquid Waste Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEIS - Final Environmental Impact Statement</td>
<td>LED - Light-Emitting Diode</td>
</tr>
<tr>
<td>FFCA - Federal Facilities Compliance Act</td>
<td>LLW - Low-Level (radioactive) Waste</td>
</tr>
<tr>
<td>FONSI - Finding of No Significant Impact</td>
<td>LLW2 - Low-Level Waste Treatment Building</td>
</tr>
<tr>
<td>FR - Federal Register</td>
<td>LLWTF - Low-Level Waste Treatment Facility (SSW MU #1)</td>
</tr>
<tr>
<td>FRS - Fuel Receiving and Storage</td>
<td>LPS - Liquid Pretreatment System</td>
</tr>
<tr>
<td>FSSP - Final Status Survey Plan</td>
<td>LSA - Lag Storage Addition</td>
</tr>
<tr>
<td>FY - Fiscal Year</td>
<td>LTS - Lavery Till Sand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>LWTS - Liquid Waste Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET - General Employee Training</td>
<td>LED - Light-Emitting Diode</td>
</tr>
<tr>
<td>GHG - Greenhouse Gas</td>
<td>LLW - Low-Level (radioactive) Waste</td>
</tr>
<tr>
<td>GMP - Groundwater Monitoring Program</td>
<td>LLW2 - Low-Level Waste Treatment Building</td>
</tr>
<tr>
<td>GSA - General Services Administration</td>
<td>LLWTF - Low-Level Waste Treatment Facility (SSW MU #1)</td>
</tr>
<tr>
<td>GSL - (Site-Specific) Groundwater Screening Levels</td>
<td>LPS - Liquid Pretreatment System</td>
</tr>
<tr>
<td>GTCC - Greater Than Class C</td>
<td>LSA - Lag Storage Addition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>LWTS - Liquid Waste Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>ha - Hectare</td>
<td>LED - Light-Emitting Diode</td>
</tr>
<tr>
<td>HEPA - High-Efficiency Particulate Air (filter)</td>
<td>LLW - Low-Level (radioactive) Waste</td>
</tr>
<tr>
<td>HLW - High-Level (radioactive) Waste</td>
<td>LLW2 - Low-Level Waste Treatment Building</td>
</tr>
<tr>
<td>HP/BBS - Human Performance/Behavior-Based Safety</td>
<td>LLWTF - Low-Level Waste Treatment Facility (SSW MU #1)</td>
</tr>
<tr>
<td>HQ - Headquarters</td>
<td>LPS - Liquid Pretreatment System</td>
</tr>
<tr>
<td>HVAC - Heating, Ventilation, and Air Conditioning</td>
<td>LSA - Lag Storage Addition</td>
</tr>
<tr>
<td>HWSL - Hazardous Waste Storage Locker</td>
<td>LTS - Lavery Till Sand</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>LWTS - Liquid Waste Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAEA - International Atomic Energy Agency</td>
<td>LED - Light-Emitting Diode</td>
</tr>
<tr>
<td>IAP - Integrated Assessment Program</td>
<td>LLW - Low-Level (radioactive) Waste</td>
</tr>
<tr>
<td>ICRP - International Commission on Radiological Protection</td>
<td>LLW2 - Low-Level Waste Treatment Building</td>
</tr>
<tr>
<td>IM - Interim Measure</td>
<td>LLWTF - Low-Level Waste Treatment Facility (SSW MU #1)</td>
</tr>
<tr>
<td>INEEL - Idaho National Engineering and Environmental Laboratory (historical)</td>
<td>LPS - Liquid Pretreatment System</td>
</tr>
<tr>
<td>ISMS - Integrated Safety Management System</td>
<td>LSA - Lag Storage Addition</td>
</tr>
<tr>
<td>ISO - International Organization for Standardization</td>
<td>LTS - Lavery Till Sand</td>
</tr>
<tr>
<td>ISP - Independent Scientific Panel</td>
<td>LWTS - Liquid Waste Treatment System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>LWTS - Liquid Waste Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRS - Kent Recessional Sequences</td>
<td>LED - Light-Emitting Diode</td>
</tr>
<tr>
<td>KT - Kent Till</td>
<td>LLW - Low-Level (radioactive) Waste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>LWTS - Liquid Waste Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAS - Linear Alkylate Sulfonate</td>
<td>LED - Light-Emitting Diode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>LWTS - Liquid Waste Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPEP - Mixed Analyte Performance Evaluation Program</td>
<td>LED - Light-Emitting Diode</td>
</tr>
<tr>
<td>MCCL - Maximum Contaminant Level</td>
<td>LLW - Low-Level (radioactive) Waste</td>
</tr>
<tr>
<td>MCLG - Maximum Contaminant Level Goal</td>
<td>LLW2 - Low-Level Waste Treatment Building</td>
</tr>
<tr>
<td>MEOSI - Maximally Exposed Off-Site Individual</td>
<td>LLWTF - Low-Level Waste Treatment Facility (SSW MU #1)</td>
</tr>
<tr>
<td>MFHT - Melter Feed Hold Tank</td>
<td>LPS - Liquid Pretreatment System</td>
</tr>
<tr>
<td>MGD - Million Gallons per Day</td>
<td>LSA - Lag Storage Addition</td>
</tr>
<tr>
<td>MLLW - Mixed Low Level Waste</td>
<td>LTS - Lavery Till Sand</td>
</tr>
<tr>
<td>MOU - Memorandum of Understanding</td>
<td>LWTS - Liquid Waste Treatment System</td>
</tr>
<tr>
<td>MPPB - Main Plant Process Building</td>
<td>LWTS - Liquid Waste Treatment System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>LWTS - Liquid Waste Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA - Not Applicable</td>
<td>LED - Light-Emitting Diode</td>
</tr>
<tr>
<td>NCRP - National Council on Radiation Protection and Measurements</td>
<td>LLW - Low-Level (radioactive) Waste</td>
</tr>
<tr>
<td>NDA - Nuclear Regulatory Commission (NRC)-Licensed Disposal Area</td>
<td>LLW2 - Low-Level Waste Treatment Building</td>
</tr>
<tr>
<td>NEPA - National Environmental Policy Act</td>
<td>LLWTF - Low-Level Waste Treatment Facility (SSW MU #1)</td>
</tr>
<tr>
<td>NESHAP - National Emission Standards for Hazardous Air Pollutants</td>
<td>LPS - Liquid Pretreatment System</td>
</tr>
<tr>
<td>NFS - Nuclear Fuel Services, Inc.</td>
<td>LSA - Lag Storage Addition</td>
</tr>
<tr>
<td>NH3 - Ammonia</td>
<td>LTS - Lavery Till Sand</td>
</tr>
<tr>
<td>NOI - Notice of Intent</td>
<td>LWTS - Liquid Waste Treatment System</td>
</tr>
<tr>
<td>NO2-N - Nitrite (as N)</td>
<td>MAG - Mixed Analyte Performance Evaluation Program</td>
</tr>
<tr>
<td>NO3-N - Nitrate (as N)</td>
<td>MCL - Maximum Contaminant Level</td>
</tr>
<tr>
<td>NOx - Nitrogen Oxides</td>
<td>MCLG - Maximum Contaminant Level Goal</td>
</tr>
<tr>
<td>NOAA - National Oceanic and Atmospheric Administration</td>
<td>MEOSI - Maximally Exposed Off-Site Individual</td>
</tr>
<tr>
<td>NPGMP - North Plateau Groundwater Monitoring Plan</td>
<td>MFHT - Melter Feed Hold Tank</td>
</tr>
<tr>
<td>NPGRS - North Plateau Groundwater Recovery System</td>
<td>MGD - Million Gallons per Day</td>
</tr>
<tr>
<td>NPOC - Nonpurgeable Organic Carbon</td>
<td>MLLW - Mixed Low Level Waste</td>
</tr>
<tr>
<td>NQA-1 - Nuclear Quality Assurance, Level 1</td>
<td>MOU - Memorandum of Understanding</td>
</tr>
<tr>
<td>NRC - (U.S.) Nuclear Regulatory Commission</td>
<td>MPPB - Main Plant Process Building</td>
</tr>
<tr>
<td>NTU - Nephelometric Turbidity Unit</td>
<td>NYS - New York State</td>
</tr>
<tr>
<td>NUREG - (U.S.) NRC Regulation</td>
<td>NYSDEC - New York State Department of Environmental Conservation</td>
</tr>
<tr>
<td>NYCRR - New York State Official Compilation of Codes, Rules, and Regulations</td>
<td>NQA-1 - Nuclear Quality Assurance, Level 1</td>
</tr>
<tr>
<td>NYGG - New York State Groundwater Guidelines</td>
<td>NRC - (U.S.) Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>NYS - New York State</td>
<td>NQA-1 - Nuclear Quality Assurance, Level 1</td>
</tr>
<tr>
<td>NYSDEC - New York State Department of Environmental Conservation</td>
<td>NRC - (U.S.) Nuclear Regulatory Commission</td>
</tr>
</tbody>
</table>
NYSDOH - New York State Department of Health
NYSDOL - New York State Department of Labor
NYSERDA - New York State Energy Research and Development Authority

OAD - Office of Atomic Development
OSTI - Office of Scientific and Technical Information
OVE - Outdoor Ventilation Enclosure

PBS - Petroleum Bulk Storage
PCB - Polychlorinated Biphenyl
PEA - Programmatic Environmental Assessment
PEIS - Programmatic Environmental Impact Statement
PNL - Pacific Northwest Laboratory
POC - Principal Organic Contaminant
PPM - Parts Per Million
PQL - Practical Quantitation Limit
PTW - Permeable Treatment Wall
PTWPMP - Permeable Treatment Wall Performance Monitoring Plan
PVS - Permanent Ventilation System
PVU - Portable Ventilation Unit

QA - Quality Assurance
QC - Quality Control

RAO - Remedial Action Objectives
RCRA - Resource Conservation and Recovery Act
REM - Roentgen Equivalent Man
RFI - RCRA Facility Investigation
RHWF - Remote-Handled Waste Facility
ROD - Record of Decision
RVS - Replacement Ventilation System
RVU - Replacement Ventilation Unit

S&G - Sand and Gravel Unit
SARA - Superfund Amendments and Reauthorization Act
SDA - (New York) State-Licensed Disposal Area
SEC - Safety and Ecology Corporation

SEQR - (New York) State Environmental Quality Review Act
SI - Systeme Internationale (International System of Units)
SME - Subject Matter Expert
SOx - Sulfur Oxides
SPDES - (New York) State Pollutant Discharge Elimination System
SSP - Site Sustainability Plan
SSPP - Strategic Sustainability Performance Plan
SSWMU - Super Solid Waste Management Unit
STP - Site Treatment Plan
STS - Supernatant Treatment System
SU - Standard Unit
Sv - Sievert
SVOC - Semivolatile Organic Compound
SWMU - Solid Waste Management Unit
SWPPP - Storm Water Pollution Prevention Plan
SWS - Slack Water Sequence

T&VDS - Tank and Vault Drying System
TBP - Tributyl Phosphate
TBU - Thick-Bedded Unit
TDS - Total Dissolved Solids
TER - Technical Evaluation Report
TKN - Total Kjeldahl Nitrogen
TLD - Thermoluminescent Dosimeter
TOC - Total Organic Carbon
TOGS - Technical and Operational Guidance Series
TOX - Total Organic Halides
TRU - Transuranic
TSS - Total Suspended Solids

U.S. - United States
UDF - Unit Dose Factor
ULT - Unweathered Lavery Till
UODD - Ultimate Oxygen Demand
URS - URS - Energy & Construction Division (historical)
USACE - U.S. Army Corps of Engineers
USC - United States Code
UST - Underground Storage Tank

VIT - Vitrification
VOC - Volatile Organic Compound
VPP - Voluntary Protection Program
VSC - Vertical Storage Cask
Acronyms and Abbreviations

W

WET - Whole Effluent Toxicity
WIR - Waste Incidental to Reprocessing
WLT - Weathered Lavery Till
WNYNSC - Western New York Nuclear Service Center
WTF - Waste Tank Farm
WVDP - West Valley Demonstration Project
WVES - West Valley Environmental Services LLC
(historical)
WVNS - West Valley Nuclear Services (historical)
WVNSCO - West Valley Nuclear Services Company
(historical)
WWTF - Wastewater Treatment Facility
REFERENCES AND BIBLIOGRAPHY

(For a bibliographical listing that includes basis documents not specifically cited in the text, see the WVDP Annual Site Environmental Report for 2003. [Available on the DOE-WVDP website at www.wv.doe.gov])

References and Bibliography

_____________. August 21, 2014. WVDP Integrated Safety Management System (ISMS) Description. WVDP-310, including Addendum 1, WVDP Worker Safety and Health Plan, Current revision, April 19, 2012.

References and Bibliography

___________. 1995. Age-Dependent Doses to the Members of the Public from Intake of Radionuclides - Part 5 Compilation of Ingestion and Inhalation coefficients. ICRP Publication 72, Pergamon Press, New York.

___________. nd. ECL. Article 15. Water Resources. Title 5. Protection of Water.
References and Bibliography

___________. nd. ECL. Article 15. Water Resources. Title 33. Water Withdrawal Reporting.

___________. nd. ECL. Article 17. Water Pollution Control. Title 8. State Pollutant Discharge Elimination System.

___________. nd. ECL. Article 24. Freshwater Wetlands Act.

___________. nd. ECL. Article 40. Hazardous Substances Bulk Storage Act.

___________. nd. Public Health Law. Article 5. Laboratories. Section 502. Laboratories; Examinations; Certificates of Approval.

New York State Department of Environmental Conservation. nd. Title 6, New York Codes, Rules, and Regulations (6 NYCRR). Environmental Conservation Rules and Regulations.

___________. nd. Hazardous Waste Management Facilities. 6 NYCRR Subpart 373.

___________. nd. Management of Specific Hazardous Waste. 6 NYCRR Subpart 374.

___________. nd. Solid Waste Management Facilities. 6 NYCRR Part 360.

___________. nd. Title 6 NYCRR, Subchapter D, Water Regulation, Parts 595 (Releases of Hazardous Substances Reporting, Response and Corrective Action); 596 (Hazardous Substance Bulk Storage Regulations), 597 (List of Hazardous Substances), 598 (Handling and Storage of Hazardous Substances); and 599 (Standards for New or Modified Hazardous Substance Storage Facilities).

___________. December 27, 1985 (amended February 12, 1992). Title 6 NYCRR Parts 612 (Registration of Petroleum Storage Facilities), 613 (Handling and Storage of Petroleum), and 614 (Standards for New and Substantially Modified Petroleum Storage Facilities).

___________. December 31, 1988 (last revised May 12, 2006). Used Oil. 6 NYCRR Subpart 360-14.

References and Bibliography

_____________. December 5, 2006. Land Disposal Restrictions. 6 NYCRR Subpart 376.

_____________. October 21, 2010. CP-51/Soil Cleanup Guidance. 6 NYCRR Part 375 Standards (as basis).

_____________. July 1, 2011. State Pollution Discharge Elimination System (SPDES) Discharge Permit NY0000973.

_____________. nd. Title 10, New York Code, Rules, and Regulations (10 NYCRR). Sources of Water Supply. Part 5 (Drinking Water Supplies) and Part 170 (Sources of Water Supply).

References and Bibliography

_____________. 1977. *Federal Water Pollution Control Act of 1977.* 33 USC §1251 et seq. (Also known as the Clean Water Act)

_____________. October 1, 1980. *An Act to Authorize the Department of Energy to Carry Out a High-Level Liquid Nuclear Waste Management Demonstration Project at the Western New York Service Center in West Valley, New York.* Public Law 96-368 [S. 2443]. Congressional Record, Vol. 126. (Also known as the WVDP Act)

References and Bibliography

________________. nd. Quality Assurance Criteria. 10 CFR 830.122.

References and Bibliography

_____________. November 6, 2001. *Advance Notice of Intent to Prepare an Environmental Impact Statement to Evaluate Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center.* 66 FR 56090.

_____________. March 13, 2003. *Notice of Intent to Prepare an Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Services Center.* 68 FR 12044.

_____________. December 5, 2008. *Notice of Availability of the Revised Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center.* 73 FR 74160.

_____________. November 18, 2009. *RESRAD-BIOTA for Windows.* Argonne National Laboratory, with support from U.S. EPA and U.S. NRC.

References and Bibliography

________. April 25, 2011. *Quality Assurance*. DOE Order 414.1D.

________. June 2012. *Climate Change Adaptation Plan*.

________. February 2013. *West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation for Concentrator Feed Makeup Tank and Melter Feed Hold Tank*.

References and Bibliography

___________. December 2008. Revised Draft Environmental Impact Statement for Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center. DOE/EIS-0226-D (Revised).

___________. March 14, 2011. Second Supplemental Agreement to the Cooperative Agreement Between the United States Department of Energy and the New York State Energy Research and Development Authority Setting Forth Special Provisions for the Identification, Implementation, and Management of the Phase 1 Studies for the Decommissioning and/or Long-Term Stewardship at the West Valley Demonstration Project and Western New York Nuclear Service Center.

U.S. Environmental Protection Agency. nd. 40 Code of Federal Regulations, Protection of the Environment, Chapter 1, Environmental Protection Agency.

References and Bibliography

___________. October 9, 2002. Memorandum of Understanding Between the Environmental Protection Agency and the Nuclear Regulatory Commission. Consultation and Finality on Decommissioning and Decontamination of Contaminated Sites.

___________. July 9, 2009. Communication from R. Borsellino, Acting Director, EPA Division of Environmental Planning and Protection, to B.C. Bower, Director U.S. DOE-WVDP. Approval to implement environmental measurements for Rad-NESHAP compliance and to modify the MPPB stack.

___________. July 14, 2011. Communication from K. Bricke, Acting Director, EPA Division of Environmental Planning and Protection, to B.C. Bower, Director U.S. DOE-WVDP. Approval request to grant a 24-month extension of the interim approval to use ambient measurements to demonstrate Rad-NESHAP compliance to modify the MPPB stack.

___________. April 17, 2015. Approval to Use Ambient Air Monitoring Systems for Compliance. Email from Povetko, Oleg, PhD, EPA Region 2, to Maloney, Moira, DOE-WVDP.

___________. July 1997. Radiological Criteria for License Termination. 10 CFR Part 20, Appendix E.

___________. February 1, 2002. Decommissioning Criteria for the West Valley Demonstration Project (M-32) at the West Valley Site; Final Policy Statement. 67 FR 5003.

West Valley Nuclear Services Co., Inc. May 1, 1995. Subsurface Probing Investigation on the North Plateau at the West Valley Demonstration Project. Rev. 0. WVDP-220.
References and Bibliography

DISTRIBUTION

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Federal Organization</th>
<th>Recipient</th>
<th>State Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Office of Scientific and Technical Information (OSTI)</td>
<td>T. Hoffman</td>
<td>NYS Attorney Generals Office</td>
<td></td>
</tr>
<tr>
<td>W. Eckroade</td>
<td>DOE - HQ</td>
<td>E. Schneiderman</td>
<td>NYS Attorney Generals Office</td>
</tr>
<tr>
<td>D. Geiser</td>
<td>DOE - HQ</td>
<td>M. Cruden</td>
<td>NYSDEC - Albany</td>
</tr>
<tr>
<td>R. Hardwick</td>
<td>DOE - HQ</td>
<td>J. Harrington</td>
<td>NYSDEC - Albany</td>
</tr>
<tr>
<td>F. Marcinowski</td>
<td>DOE - HQ</td>
<td>T. Killeen</td>
<td>NYSDEC - Albany</td>
</tr>
<tr>
<td>R. Natoli*</td>
<td>DOE - HQ</td>
<td>T. Rice</td>
<td>NYSDEC - Albany</td>
</tr>
<tr>
<td>G. Podonsky</td>
<td>DOE - HQ</td>
<td>J. Weidman*</td>
<td>NYSDEC - Albany</td>
</tr>
<tr>
<td>J. Rhoderick</td>
<td>DOE - HQ</td>
<td>P. Concannon</td>
<td>NYSDEC - Region 9</td>
</tr>
<tr>
<td>W. Roege</td>
<td>DOE - HQ</td>
<td>M. Jackson*</td>
<td>NYSDEC - Region 9</td>
</tr>
<tr>
<td>B. Thomas</td>
<td>DOE - HQ</td>
<td>K. Martin</td>
<td>NYSDEC - Region 9</td>
</tr>
<tr>
<td>M. Norato</td>
<td>NRC - HQ</td>
<td>J. Strickland</td>
<td>NYSDEC - Region 9</td>
</tr>
<tr>
<td>D. Persinko</td>
<td>NRC - HQ</td>
<td>S. Gavitt</td>
<td>NYSDOH - Albany</td>
</tr>
<tr>
<td>A. Snyder</td>
<td>NRC - HQ</td>
<td>D. O’Hehir</td>
<td>NYSDOH - Albany</td>
</tr>
<tr>
<td>M. Roberts</td>
<td>NRC - Region 1</td>
<td>T. Semkow</td>
<td>NYSDOH - Albany</td>
</tr>
<tr>
<td>M. Basille</td>
<td>U.S. EPA - Region II</td>
<td>L. Sturman</td>
<td>NYSDOH - Albany</td>
</tr>
<tr>
<td>A. Everett</td>
<td>U.S. EPA - Region II</td>
<td>R. Snyder</td>
<td>NYSDOH - Troy</td>
</tr>
<tr>
<td>P. Giardina</td>
<td>U.S. EPA - Region II</td>
<td>J. Rhodes</td>
<td>NYSERDA - Albany (President)</td>
</tr>
<tr>
<td>A. Nidal</td>
<td>U.S. EPA - Region II</td>
<td>N. Shaw</td>
<td>NYSERDA - General Counsel</td>
</tr>
<tr>
<td>A. Park</td>
<td>U.S. EPA - Region II</td>
<td>A. Peterson</td>
<td>NYSERDA - Albany</td>
</tr>
<tr>
<td>O. Povetko</td>
<td>U.S. EPA - Region II</td>
<td>P. Bembia</td>
<td>NYSERDA - West Valley</td>
</tr>
<tr>
<td>W. Kappel</td>
<td>USGS (retired)</td>
<td>A. Mellon</td>
<td>NYSERDA - West Valley</td>
</tr>
<tr>
<td>T. Reed</td>
<td>U.S. Congress, 23rd Dist.</td>
<td>B. Frank</td>
<td>NYSERDA - West Valley</td>
</tr>
<tr>
<td>L. Slaughter</td>
<td>U.S. Congress, 25th Dist.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Higgins</td>
<td>U.S. Congress, 26th Dist.</td>
<td>R. Walter</td>
<td>New York Assembly, 146th Dist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. Young</td>
<td>New York Senate, 57th Dist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. Gallivan</td>
<td>New York Senate, 59th Dist.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. Kennedy</td>
<td>New York Senate, 63rd Dist.</td>
</tr>
</tbody>
</table>
Postcards are sent to each of the above listed recipients to provide notice of public availability of the ASER. The postcard directs the recipient to the DOE website (www.wv.doe.gov) for electronic access to the report and provides an address for requesting additional copies on compact disk.

* The starred recipients are automatically sent a copy of the report on compact disk.
This report was compiled and edited by A.F. Steiner (team leader), M.P. Pendl, and B.L. Werchowski of CHBWV West Valley Demonstration Project staff. Other technical preparers and reviewers are listed below.

Bauer, B.P.
Biedermann, C.A.
Coble, D.W.
Dogal, T.D.
Dukes, H.H.
Fox, J.R.
Frank, B.M.
Geimer, R.M.
Gordon, L.M.
Hoch, J.J.
Jeffery, B.N.
Kean, W.N.
Klenk, D.P.
Krentz, M.P.
Lee, C.B.
Loop, P.B.
Maloney, M.N.
Meess, D.C.
Pietraszek, J.E.
Regan, M.P.
Rendall, J.D.
Roesch, C.T.
Steiner, R.E.
Szalinski, S.J.
Wedvik, S.K.
Wrotniak, C.M.
APPENDIX A
2014 Environmental Monitoring Program

Environmental Monitoring Program
Drivers and Sampling Rationale

Permits, agreements, and/or programs may require formal reports of monitoring results. Radiological air emissions from the WVDP are reported annually in the NESHAP report to EPA. Nonradiological releases in water effluent and storm water drainage points covered under the SPDES permit are reported monthly to NYSDEC in a DMR. Groundwater monitoring results are reported quarterly to NYSDEC. Annual results from the monitoring program, as a whole, are evaluated and discussed in this ASER, which is prepared as directed in DOE Order 231.1B, “Environment, Safety, and Health Reporting,” and associated guidance.

Table A-1 summarizes programmatic drivers and guidance applicable to each environmental medium measured or sampled as part of the WVDP Environmental Monitoring Program.

Sampling Schedule

Sampling locations are assigned a specific identifier, the location code, which is used to schedule sampling, track samples, and trace analytical results. Table A-2 provides the details of the sampling schedule for each location monitored in 2014. Routine sampling locations are shown on Figures A-2 through A-14. Table headings in the sampling program described in Table A-2 are as follows:

- **Sample Location Code.** This code describes the physical location where the sample is collected. The code consists of seven or eight characters: The first character identifies the sample medium as Air, Water, Soil/sediment, Biological, or Direct measurement. The second character specifies on-site or off-site. The remaining characters describe the specific location (e.g., AFGRVAL is Air off-site at GReat VALley). Distances noted at sampling locations are as measured in a straight line from the ventilation stack of the MPPB on site. Groundwater and storm water sampling points (e.g., WN0408, WNNDATR, WNS004) are often abbreviated in figures or data tables (i.e., “408,” “NDATR,” “S04”).

- **Sampling Type/Medium.** Describes the collection method and the physical characteristics of the medium or sample.

- **Collection Frequency/Total Annual Samples.** Indicates how often the samples are collected or retrieved and the total number of each type of sample processed in one year.

- **Measurements/Analyses.** Notes the type of measurement taken from the sampling medium and/or the constituents of interest, and (in some instances) the type of analysis conducted.
Index of Environmental Monitoring Program Sample Points

Air Effluent (Figure A-6)

<table>
<thead>
<tr>
<th>Point Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSTACK</td>
<td>Main Plant Process Building</td>
<td>A-7</td>
</tr>
<tr>
<td>ANSTSTK</td>
<td>Supernatant Treatment System</td>
<td>A-7</td>
</tr>
<tr>
<td>ANCSSTK</td>
<td>01-14 Building</td>
<td>A-7</td>
</tr>
<tr>
<td>ANCSRFK</td>
<td>Contact Size-Reduction Facility</td>
<td>A-7</td>
</tr>
<tr>
<td>ANCSPFK</td>
<td>Container Sorting and Packaging Facility</td>
<td>A-7</td>
</tr>
<tr>
<td>ANVITSK</td>
<td>Vitrification Heating, Ventilation, and Air Conditioning</td>
<td>A-7</td>
</tr>
<tr>
<td>ANRHWFK</td>
<td>Remote-Handled Waste Facility</td>
<td>A-7</td>
</tr>
<tr>
<td>OVEs/PVUs</td>
<td>Outdoor Ventilated Enclosures/Portable Ventilation Units</td>
<td>A-7</td>
</tr>
</tbody>
</table>

Liquid Effluent, On-Site Water, and Storm Water Outfalls (Figures A-2 through A-4)

<table>
<thead>
<tr>
<th>Point Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNSP001</td>
<td>Lagoon 3 Weir Point</td>
<td>A-8</td>
</tr>
<tr>
<td>WNSP01B</td>
<td>Internal Process Monitoring Point</td>
<td>A-8</td>
</tr>
<tr>
<td>WNSP116</td>
<td>Pseudo-Monitoring Point Outfall 116</td>
<td>A-8</td>
</tr>
<tr>
<td>WNSP007</td>
<td>Sanitary Waste Discharge</td>
<td>A-9</td>
</tr>
<tr>
<td>WNSP006</td>
<td>Facility Main Drainage, Franks Creek at Security Fence</td>
<td>A-9</td>
</tr>
</tbody>
</table>

WNSO-Series Storm Water Outfalls

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP 1</td>
<td>WNSO04 North Swamp Drainage (WNSW74A)</td>
<td>A-9</td>
</tr>
<tr>
<td>GROUP 2</td>
<td>WNSO06 Northeast Swamp Drainage (WNSWAMP)</td>
<td>A-9</td>
</tr>
<tr>
<td></td>
<td>WNSO33 LAG Storage Drainage</td>
<td>A-9</td>
</tr>
<tr>
<td>GROUP 3</td>
<td>WNSO09 Smartditch®</td>
<td>A-10</td>
</tr>
<tr>
<td></td>
<td>WNSO12 South Facility Drainage (WNSP005)</td>
<td>A-10</td>
</tr>
<tr>
<td>GROUP 4</td>
<td>WNSO34 Rail Spur Culvert</td>
<td>A-10</td>
</tr>
<tr>
<td>GROUP 5</td>
<td>WNSO14 NDA Service Road Drainage North</td>
<td>A-10</td>
</tr>
<tr>
<td></td>
<td>WNSO17 NDA Service Road Drainage South</td>
<td>A-10</td>
</tr>
<tr>
<td></td>
<td>WNSO28 Drum Cell West Road</td>
<td>A-10</td>
</tr>
</tbody>
</table>

Not detailed on map
Liquid Effluent, On-Site Water, and Storm Water Outfalls (Figures A-2 through A-4) (concluded)

GROUP 6

WNSO36 Live-Fire Range Wetland Drainage ... A-10
WNSO37 Pump House Roadway .. A-10
WNSO38 Lake Two Roadway North .. A-10
WNSO39 Lake Two Roadway South ... A-10
WNSO41 Lake One Roadway .. A-10
WNSO42 Pre-Railroad Spur Wetland Area (Near WFBCBKG) A-10
WNSO43 Live-Fire Range Drainage East .. A-10

GROUP 7

WNSO20 Disposal Area Drainage (WNNDADR) ... A-10

GROUP 8

WNSO27 Drum Cell Drainage West .. A-11
WNSO35 Drum Cell Drainage East .. A-11
WNSWR01 Storm Water Precipitation pH Measurement Location Near the Site Rain Gauge A-11

On-Site Surface Water

WNWSWAMP Northeast Swamp Drainage Point ... A-11
WNSSW74A North Swamp Drainage Point .. A-11
WNSSP005 South Facility Drainage ... A-11
WNFRC67 Franks Creek East ... A-11
WNERB53 Erdman Brook .. A-11
WNNDADR Disposal Area Drainage .. A-11

On-Site Potable (Drinking) Water (Figure A-8)

Surface Water Supply

WNURRAW/1 Utility Room Raw Water (Surface Water Supply) A-11
WNDFILTR Utility Room Filtered, Chlorinated Water (Surface Water Supply) A-12

Groundwater Supply

WNDWell1 Drinking Water Well #1 ... A-12
WNDWell2 Drinking Water Well #2 ... A-12
WNDRAW1/2 Utility Room Raw Water ... A-12
WNDFIN Utility Room Chlorinated Water .. A-12
WNEHMKE Bedrock Well South of Main Plant .. A-12
WWCOURT Bedrock Well South of Annex .. A-12
WNCT272 Bedrock Well Southeast of Warehouse ... A-12

Potable Water Distribution System

WNDNK06 Guardhouse Bathroom Sink ... A-12
WNDNK10 Utility Room Bathroom Sink ... A-12
WNDNK13 Vit Hill Mens Room Sink .. A-12
WNDNK15 Annex Ladies Room Sink ... A-12
WNDNK23 TSB Men’s Room Sink .. A-12
WNDNURSE Nurse’s Office Sink .. A-12
WNDNKMP Main Plant Shower .. A-12
WNDNKRH RHWF Sink ... A-12
On-Site Groundwater and Seeps (Figures A-9 and A-10)

<table>
<thead>
<tr>
<th>SSWMU #</th>
<th>Location Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSWMU #1</td>
<td>LLW2 Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #2</td>
<td>Miscellaneous Small Units Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #3</td>
<td>LWTS</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #4</td>
<td>HLW Storage and Processing Tank Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #5</td>
<td>Maintenance Shop Leach Field Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #6</td>
<td>LLW Storage Area Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #7</td>
<td>Chemical Process Cell - Waste Storage Area Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #8</td>
<td>CDDL Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #9</td>
<td>NDA Unit Wells and NDATR</td>
<td>A-13</td>
</tr>
<tr>
<td>SSWMU #10</td>
<td>IRTS Drum Cell Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>RHWF</td>
<td>RHWF Wells</td>
<td>A-13</td>
</tr>
<tr>
<td>MPPB Wells</td>
<td>MPPB Downgradient Wells</td>
<td>A-14</td>
</tr>
<tr>
<td>North Plateau Seeps</td>
<td>Northeastern Edge of North Plateau</td>
<td>A-14</td>
</tr>
<tr>
<td>PTW Platform and Full Network Wells</td>
<td>A-14</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Monitoring Locations (not in a SWMU: Well Points WP-A, WP-C, WP-H)</td>
<td>A-14</td>
</tr>
<tr>
<td>Surface Elevation Points</td>
<td>Surface Water Elevation Points</td>
<td>A-14</td>
</tr>
<tr>
<td>SDA (SSWMU #11)</td>
<td>SDA Unit Wells</td>
<td>A-14</td>
</tr>
</tbody>
</table>

Soil and Sediment (Figures A-2, A-5, and A-14)

<table>
<thead>
<tr>
<th>Soil Series:</th>
<th>Location Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN Soil Series:</td>
<td>On-Site Soil/Sediment</td>
<td>A-14</td>
</tr>
<tr>
<td>SNSW74A</td>
<td>Soil/Sediment at North Swamp Drainage Point</td>
<td>A-14</td>
</tr>
<tr>
<td>SNSWAMP</td>
<td>Soil/Sediment at Northeast Swamp Drainage Point</td>
<td>A-14</td>
</tr>
<tr>
<td>SNSP006</td>
<td>Soil/Sediment at Facility Main Drainage</td>
<td>A-14</td>
</tr>
<tr>
<td>SF Soil Series:</td>
<td>Off-Site Soil Collected at Air Samplers</td>
<td>A-14</td>
</tr>
<tr>
<td>SFFXVRD</td>
<td>Surface Soil South-Southeast at Fox Valley</td>
<td>A-14</td>
</tr>
<tr>
<td>SFRT240</td>
<td>Surface Soil Northeast on Route 240</td>
<td>A-14</td>
</tr>
<tr>
<td>SFRRSPRD</td>
<td>Surface Soil Northwest on Rock Springs Road</td>
<td>A-14</td>
</tr>
<tr>
<td>SFGRVAL</td>
<td>Surface Soil South at Great Valley, Background</td>
<td>A-14</td>
</tr>
<tr>
<td>SF Sediment Series:</td>
<td>Off-Site Sediment</td>
<td>A-15</td>
</tr>
<tr>
<td>SFCCSED</td>
<td>Cattaraugus Creek at Felton Bridge, Sediment</td>
<td>A-15</td>
</tr>
<tr>
<td>SFSDSED</td>
<td>Cattaraugus Creek at Springville Dam, Sediment</td>
<td>A-15</td>
</tr>
<tr>
<td>SFTCSED</td>
<td>Buttermilk Creek at Thomas Corners, Sediment</td>
<td>A-15</td>
</tr>
<tr>
<td>SFBCSED</td>
<td>Buttermilk Creek at Fox Valley Road, Background Sediment</td>
<td>A-15</td>
</tr>
</tbody>
</table>

Off-Site Surface Water (Figure A-5)

<table>
<thead>
<tr>
<th>Location Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFBCBKG</td>
<td>A-15</td>
</tr>
<tr>
<td>WFFELBR</td>
<td>A-15</td>
</tr>
<tr>
<td>WFBCTCB</td>
<td>A-15</td>
</tr>
</tbody>
</table>
Off-Site Ambient Air (Figure A-7)

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF01_N</td>
<td>Bond Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF02_NNE</td>
<td>Route 240</td>
<td>A-16</td>
</tr>
<tr>
<td>AF03_NE</td>
<td>Route 240</td>
<td>A-16</td>
</tr>
<tr>
<td>AF04_ENE</td>
<td>Route 240</td>
<td>A-16</td>
</tr>
<tr>
<td>AF05_E</td>
<td>Heinz Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF06_ESE</td>
<td>Buttermilk Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF07_SE</td>
<td>Fox Valley Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF08_SSE</td>
<td>Fox Valley Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF09_S</td>
<td>Rock Springs Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF10_SSW</td>
<td>Dutch Hill Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF11_SW</td>
<td>Dutch Hill Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF12_WSW</td>
<td>Dutch Hill Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF13_W</td>
<td>Dutch Hill Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF14_WNW</td>
<td>Boberg Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF15_NW</td>
<td>Rock Springs Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF16_NNW</td>
<td>Rock Springs Road</td>
<td>A-16</td>
</tr>
<tr>
<td>AF16HNNW</td>
<td>MEOSI location</td>
<td>A-16</td>
</tr>
<tr>
<td>AFGRVAL</td>
<td>Great Valley Sampler, Background</td>
<td>A-17</td>
</tr>
</tbody>
</table>

Off-Site Biological (Figures A-11 and A-14)

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFMFLDMN</td>
<td>Southeast Milk, Near-Site</td>
<td>A-17</td>
</tr>
<tr>
<td>BFMCTLS</td>
<td>Control Milk, South</td>
<td>A-17</td>
</tr>
<tr>
<td>BFMBLSY</td>
<td>Milk, West-Northwest</td>
<td>A-17</td>
</tr>
<tr>
<td>BFMSCHT</td>
<td>Milk, South</td>
<td>A-17</td>
</tr>
<tr>
<td>BFDNEAR</td>
<td>Venison, Near-Site</td>
<td>A-17</td>
</tr>
<tr>
<td>BFDCTRL</td>
<td>Venison, Background</td>
<td>A-17</td>
</tr>
<tr>
<td>BFVNEAR</td>
<td>Produce, Near-Site</td>
<td>A-17</td>
</tr>
<tr>
<td>BFVCTRL</td>
<td>Produce, Background</td>
<td>A-17</td>
</tr>
<tr>
<td>BFFCATC</td>
<td>Cattaraugus Creek Fish, Downstream</td>
<td>A-18</td>
</tr>
<tr>
<td>BFFCATD</td>
<td>Cattaraugus Creek Fish, Downstream of Springville Dam</td>
<td>A-18</td>
</tr>
<tr>
<td>BFFCTRL</td>
<td>Cattaraugus Creek Fish, Background</td>
<td>A-18</td>
</tr>
</tbody>
</table>

Direct Measurement Dosimetry (Figures A-12 through A-14)

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFTLD Series</td>
<td>Off-Site Direct Radiation</td>
<td>A-18</td>
</tr>
<tr>
<td>DNTLD Series</td>
<td>On-Site/Near-Site Direct Radiation</td>
<td>A-18</td>
</tr>
</tbody>
</table>

* Near site and background produce samples (corn, apples, and beans) are identified specifically as follows: corn = BFVNEAC and BFVCTRC; apples = BFVNEAAF and BFVCTRA; beans = BFVNEAB and BFVCTRAB.
<table>
<thead>
<tr>
<th>Programmatic Drivers</th>
<th>Sampling Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site Air Emissions</td>
<td></td>
</tr>
<tr>
<td>40 CFR 61, Subpart H (radiological air emissions); DOE Order 458.1, Change 3</td>
<td>DOE/EH-0173T, Chapter 3.0 (air effluent monitoring); DOE/EP-0096, Section 3.3 (criteria for effluent measurements)</td>
</tr>
<tr>
<td>Ambient Air</td>
<td></td>
</tr>
<tr>
<td>DOE Order 458.1, Change 3</td>
<td>DOE/EH-0173T, Section 5.7.4 (environmental surveillance, air sampling locations); DOE/EP-0023, Section 4.2.3 (air sampling locations and measurement techniques)</td>
</tr>
<tr>
<td>On-Site Liquid Effluents and Storm Water</td>
<td></td>
</tr>
<tr>
<td>New York State SPDES Permit No. NY 0000973 (nonradiological; specified points only), DOE Order 458.1, Change 3 (radiological)</td>
<td>DOE/EH-0173T, Section 2.3.3 (sampling locations for effluent monitoring); New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certification for nonpotable water</td>
</tr>
<tr>
<td>Surface Water</td>
<td></td>
</tr>
<tr>
<td>DOE Order 458.1, Change 3</td>
<td>DOE/EH-0173T, Section 5.10.1 (basis and guidance for environmental surveillance, water); NYSDOH ELAP certification for potable water</td>
</tr>
<tr>
<td>Potable (Drinking) Water</td>
<td></td>
</tr>
<tr>
<td>DOE Order 458.1, Change 3</td>
<td>DOE/EH-0173T, Section 5.10 (basis and guidance for environmental surveillance, water); NYSDOH ELAP certification for potable water</td>
</tr>
<tr>
<td>On-Site Groundwater</td>
<td></td>
</tr>
<tr>
<td>RCRA §3008(h) Order on Consent (nonradiological); DOE Order 458.1, Change 3 (radiological)</td>
<td>DOE/EH-0173T, Section 5.10 (basis for environmental surveillance, water); NYSDOH ELAP certification for nonpotable water</td>
</tr>
<tr>
<td>Soil and Sediment</td>
<td></td>
</tr>
<tr>
<td>DOE Order 458.1, Change 3</td>
<td>DOE EH-0173T, Sections 5.9 (environmental surveillance soil sampling locations and methods) and 5.12 (sediment sampling locations and methods)</td>
</tr>
<tr>
<td>Biological</td>
<td></td>
</tr>
<tr>
<td>DOE Order 458.1, Change 3</td>
<td>DOE/EH-0173T, Sections 5.8 (environmental surveillance, terrestrial foodstuffs) and 5.11 (aquatic foodstuffs)</td>
</tr>
<tr>
<td>Direct Radiation</td>
<td></td>
</tr>
<tr>
<td>DOE Order 458.1, Change 3</td>
<td>DOE/EH-0173T, Section 5.5 (environmental surveillance external radiation measurement locations and frequency); DOE/EP-0023, Section 4.6 (external radiation)</td>
</tr>
</tbody>
</table>
TABLE A-2

2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/Medium</th>
<th>Collection Frequency/Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site Air Emissions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSTACK(^a) MPPB ventilation exhaust stack</td>
<td>Continuous on-line air particulate monitors</td>
<td>Continuous measurement of fixed filter; replaced biweekly; held as backup</td>
<td>Real-time monitoring - CAM</td>
</tr>
<tr>
<td>ANSTSTK(^a) STS ventilation exhaust</td>
<td>Continuous off-line air particulate filters</td>
<td>Biweekly; 26 each location</td>
<td>Gross alpha/beta, gamma isotopic(^b) upon collection, flow</td>
</tr>
<tr>
<td>ANCSRFK(^a,c) Contact size-reduction facility exhaust</td>
<td>Composite of biweekly particulate filters</td>
<td>Semiannually; 2 each location</td>
<td>Sr-90, U-232, U-233/234, U-235/236, U-238, total U, Pu-238, Pu-239/240, Am-241, gamma isotopic, flow</td>
</tr>
<tr>
<td>ANCSPFK(^a) Container sorting and packaging facility exhaust</td>
<td>Continuous off-line desiccant columns for collection of water vapor</td>
<td>Biweekly; 26 each at ANSTACK and ANSTSTK only</td>
<td>H-3, flow</td>
</tr>
<tr>
<td>ANVITSK(^a) VIT heating, ventilation, and air conditioning exhaust</td>
<td>Continuous off-line charcoal cartridges</td>
<td>Cartridges collected biweekly and composited into 2 semiannual samples at each location</td>
<td>I-129</td>
</tr>
<tr>
<td>ANRHWFK(^a) RHWF exhaust</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVEs/PVUs Outdoor ventilated enclosures/portable ventilation units</td>
<td>Continuous off-line air particulate filter</td>
<td>Collected as required by project</td>
<td>Gross alpha/beta, gamma isotopic(^b) upon collection, flow</td>
</tr>
</tbody>
</table>

\(^a\) Required by 40 CFR 61, Subpart H. Results reported in the Annual NESHAP Report and evaluated in the ASER.

\(^b\) Gamma isotopic analysis done only if gross alpha/beta activity rises significantly.

\(^c\) Operation of the contact size-reduction stack was discontinued in July 2005.
TABLE A-2 (continued)

2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/Medium</th>
<th>Collection Frequency/Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site Liquid Effluents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNSP001(^a) Lagoon 3 discharge weir</td>
<td>Continuous</td>
<td>Daily during discharge. Lagoon 3 is discharged 4 to 8 times per year, averaging 6 to 7 days per discharge; 24–56 days per year</td>
<td>Daily flow, hold for flow-weighted composite</td>
</tr>
<tr>
<td></td>
<td>Grab</td>
<td>Twice during discharge; 8–16 per year</td>
<td>Gross alpha/beta, H-3, Sr-90, gamma isotopic</td>
</tr>
<tr>
<td></td>
<td>Grab</td>
<td>Twice during discharge; 8–16 per year</td>
<td>Settleable solids, TDS, Dissolved Oxygen (DO)</td>
</tr>
<tr>
<td></td>
<td>24-hour composite</td>
<td>Twice during discharge; 8–16 per year</td>
<td>5-day Biological Oxygen Demand (BOD(_5)), Total Suspended Solids (TSS), Ammonia (as NH(_3)), TKN (as N), total Fe</td>
</tr>
<tr>
<td></td>
<td>Grab</td>
<td>Once during discharge; 4–8 per year</td>
<td>Total Hg (method 1631), pH, total recoverable Co, Se, V, total residual chlorine, oil & grease, surfactant (as LAS)</td>
</tr>
<tr>
<td></td>
<td>24-hour composite</td>
<td>Once during discharge; 4–8 per year</td>
<td>Total Al, total recoverable As, dissolved sulfide, NO(_3)-N, NO(_2)-N, SO(_4)</td>
</tr>
<tr>
<td></td>
<td>24-hour composite</td>
<td>Quarterly; 4 per year, every five years(^b)</td>
<td>Whole Effluent Toxicity (WET) Testing</td>
</tr>
<tr>
<td></td>
<td>Grab</td>
<td>Semiannually; 2 per year</td>
<td>Cyanide amenable to chlorination, Heptachlor</td>
</tr>
<tr>
<td></td>
<td>24-hour composite</td>
<td>Semiannually; 2 per year</td>
<td>Bromide, B, total Mn, Ni, total recoverable Cu, Cr, Pb, Ti, Zn</td>
</tr>
<tr>
<td></td>
<td>Grab</td>
<td>Annually; 1 per year</td>
<td>Total recoverable Cr+6, Dichlorodifluoromethane, trichlorofluoromethane, 3,3-dichlorobenzidine, tributyl phosphate, xylene, hexachlorobenzene, 2-butaneone, alpha-BHC, chloroform</td>
</tr>
<tr>
<td></td>
<td>24-hour composite</td>
<td>Annually; 1 per year</td>
<td>Total Ba, Sb, total recoverable Cd</td>
</tr>
<tr>
<td></td>
<td>Calculated from BOD(_5) and TKN</td>
<td>Twice during discharge; 8–16 per year</td>
<td>Ultimate Oxygen Demand (UOD)</td>
</tr>
<tr>
<td>WNSP018(^a) Internal process monitoring point</td>
<td>Continuous</td>
<td>Recorded when operating</td>
<td>Total flow, elapsed flow time</td>
</tr>
<tr>
<td></td>
<td>Grab liquid</td>
<td>Twice per month when operating; 0–24 per year</td>
<td>Total Hg (method 1631), pH, total recoverable Co, Se, V, total residual</td>
</tr>
<tr>
<td>WNSP116(^a) Pseudo-monitoring point outfall 116</td>
<td>Calculated</td>
<td>Twice per lagoon discharge; 8–16 per year</td>
<td>TDS</td>
</tr>
</tbody>
</table>

\(^a\) Required by SPDES Permit #NY0000973. Results reported in the SPDES DMR and evaluated in the ASER.

\(^b\) WET testing was performed quarterly for the first year in 2012, and will be repeated again in 2017.

\(^c\) WNSP01B did not operate in 2014.
TABLE A-2 (continued)

2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/ Medium</th>
<th>Collection Frequency/ Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site Liquid Effluents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNSP007<sup>a</sup></td>
<td>Sanitary waste discharge</td>
<td>24-hour composite liquid 1 per month; 10 per year in 2014<sup>a</sup></td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite of monthly samples Annually; 1 per year</td>
<td>Sr-90, gamma isotopic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grab 2 per month; 20 per year in 2014<sup>a</sup></td>
<td>pH, settleable solids, TDS, DO, oil & grease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-hour composite 2 per month; 20 per year in 2014<sup>a</sup></td>
<td>TSS, BOD<sub>5</sub>, ammonia (as NH<sub>3</sub>), total Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grab Monthly; 10 per year in 2014<sup>a</sup></td>
<td>Total residual chlorine, total Hg (method 1631)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-hour composite Monthly; 10 per year in 2014<sup>a</sup></td>
<td>TKN (as N), NO<sub>2</sub>-N,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-hour composite 2 per month, 20 per year in 2014<sup>a</sup></td>
<td>Flow rate (gpm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calculated from BOD<sub>5</sub> and TKN Monthly; 10 per year in 2014<sup>a</sup></td>
<td>UOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-hour composite Quarterly; 4 per year, once every 5 years<sup>b</sup></td>
<td>WET Testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grab Annually; 1 per year</td>
<td>Chloroform</td>
</tr>
<tr>
<td>WNSP006</td>
<td>Franks Creek at the security fence</td>
<td>Timed continuous composite Weekly during lagoon discharge, otherwise biweekly; 26–34 per year</td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite of weekly and biweekly samples Monthly; 12 per year</td>
<td>Sr-90 and gamma isotopic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite of weekly and biweekly samples Quarterly; 4 per year</td>
<td>C-14, Tc-99, I-129, U-232, U-233/234, U-235/236, U-238, total U, Pu-238, Pu-239/240, Am-241</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grab Three per lagoon discharge: pre-discharge, near beginning, at end, 12–24 per year</td>
<td>TDS, flow rate</td>
</tr>
<tr>
<td>Storm Water Outfalls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 1<sup>a</sup></td>
<td>WNSO04 (S04)</td>
<td>First flush grab Semiannually; 2 per year</td>
<td>pH, oil & grease, BOD<sub>5</sub>, TSS, TDS, total P, Al, Fe, total recoverable Cu, Pb, Zn, Cd, Cr, Cr+6, Se, V, TKN (as N), ammonia (as NH<sub>3</sub>), NO<sub>2</sub>-N, NO<sub>2</sub>-N, total nitrogen (as N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flow-weighted composite Semiannually; 2 per year</td>
<td>Maximum flow, total flow, plus all of the above constituents except for pH and oil & grease</td>
</tr>
<tr>
<td>Group 2<sup>a</sup></td>
<td>WNSO06 (S06)</td>
<td>First flush grab Semiannually; 2 per year</td>
<td>pH, oil & grease, BOD<sub>5</sub>, TSS, TDS, total P, Al, Fe, total recoverable Cu, Pb, Zn, surfactant (as LAS)</td>
</tr>
<tr>
<td></td>
<td>WNSO33 (S33)</td>
<td>Flow-weighted composite Semiannually; 2 per year</td>
<td>Maximum flow, total flow, plus all of the above constituents except for pH and oil & grease</td>
</tr>
</tbody>
</table>

^a Required by SPDES Permit #NY0000973. The waste treatment facility was shutdown in November 2014. WNSP007 is not sampled if there is no discharge, thus there were no samples collected in November and December 2014. Results are reported in the SPDES DMR and evaluated in this ASER.

^b WET testing was performed quarterly for the first year in 2012, and will be repeated again in 2017.
TABLE A-2 (continued)
2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/ Medium</th>
<th>Collection Frequency/ Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Water Outfalls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 3<sup>a</sup> WNSO09 (S09) WNSO12 (S12)</td>
<td>First flush grab</td>
<td>Semiannually; 2 per year</td>
<td>pH, oil & grease, BOD<sub>5</sub>, TSS, TDS, total P, Al, Fe, Hg [method 1631], total recoverable Cu, Pb, Zn, TKN (as N), ammonia (as NH<sub>3</sub>), NO<sub>3</sub>−-N, NO<sub>2</sub>−-N, alpha-BHC, total nitrogen (as N)</td>
</tr>
<tr>
<td></td>
<td>Flow-weighted composite</td>
<td>Semiannually; 2 per year</td>
<td>Maximum flow, total flow, plus all of the above constituents (except for pH, oil & grease, and Hg [method 1631])</td>
</tr>
<tr>
<td>Group 4<sup>a</sup> WNSO34 (S34)</td>
<td>First flush grab</td>
<td>Semiannually; 2 per year</td>
<td>pH, oil & grease, BOD<sub>5</sub>, TSS, TDS, total P, Al, Fe, total recoverable Cu, Pb, Zn, surfactant (as LAS)</td>
</tr>
<tr>
<td></td>
<td>Flow-weighted composite</td>
<td>Semiannually; 2 per year</td>
<td>Maximum flow, total flow, plus all of the above constituents except for pH and oil & grease</td>
</tr>
<tr>
<td>Group 5<sup>a</sup> WNSO14 (S14) WNSO17 (S17) WNSO28 (S28)</td>
<td>First flush grab</td>
<td>Semiannually; 2 per year<sup>b</sup></td>
<td>pH, oil & grease, BOD<sub>5</sub>, TSS, TDS, total P, Al, Fe, total recoverable Cu, Pb, Zn, V, TKN (as N), ammonia (as NH<sub>3</sub>), NO<sub>3</sub>−-N, NO<sub>2</sub>−-N, surfactant (as LAS), sulfide, settleable solids, total nitrogen (as N)</td>
</tr>
<tr>
<td></td>
<td>Flow-weighted composite</td>
<td>Semiannually; 2 per year<sup>b</sup></td>
<td>Maximum flow, total flow, plus all of the above constituents except for pH and oil & grease</td>
</tr>
<tr>
<td>Group 6<sup>a</sup> WNSO36 (S36) WNSO37 (S37) WNSO38 (S38) WNSO39 (S39) WNSO41 (S41) WNSO42 (S42) WNSO43 (S43)</td>
<td>First flush grab</td>
<td>Semiannually; 2 per year<sup>b</sup></td>
<td>pH, oil & grease, BOD<sub>5</sub>, TSS, TDS, total P, Al, Fe, total recoverable Cu, Pb, Zn, V, TKN (as N), ammonia (as NH<sub>3</sub>), NO<sub>3</sub>−-N, NO<sub>2</sub>−-N, surfactant (as LAS), sulfide, settleable solids, total nitrogen (as N)</td>
</tr>
<tr>
<td></td>
<td>S43 only, grab</td>
<td>Semiannually; 2 per year</td>
<td>Total recoverable Pb</td>
</tr>
<tr>
<td></td>
<td>Flow-weighted composite</td>
<td>Semiannually; 2 per year<sup>b</sup></td>
<td>Maximum flow, total flow, plus all of the above constituents except for pH and oil & grease</td>
</tr>
<tr>
<td>Group 7<sup>a</sup> WNSO20 (S20)</td>
<td>First flush grab</td>
<td>Semiannually; 2 per year</td>
<td>pH, oil & grease, BOD<sub>5</sub>, TSS, TDS, total P, Al, Fe, total recoverable Cu, Pb, Zn, TKN (as N), ammonia (as NH<sub>3</sub>), NO<sub>3</sub>−-N, NO<sub>2</sub>−-N, surfactant (as LAS), sulfide, total nitrogen (as N)</td>
</tr>
<tr>
<td></td>
<td>Flow-weighted composite</td>
<td>Semiannually; 2 per year</td>
<td>Maximum flow, total flow, plus all of the above constituents except for pH and oil & grease</td>
</tr>
</tbody>
</table>

^a Required by SPDES Permit # NY0000973. Results reported in the monthly SPDES DMR and evaluated in this ASER.

^b For groups containing more than two outfalls, outfalls should be sampled in a rotational sequence until all outfalls in that group have been sampled.
2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/ Medium</th>
<th>Collection Frequency/ Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Water Outfalls (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 8<sup>a</sup> WNSO27 (S27) WNSO35 (S35)</td>
<td>First flush grab</td>
<td>Semiannually; 2 per year</td>
<td>pH, oil & grease, BOD<sub>5</sub>, TSS, TDS, total P, Al, Fe, total recoverable Cu, Pb, Zn, TKN (as N), ammonia (as NH<sub>3</sub>), NO<sub>3</sub>-N, NO<sub>2</sub>-N, surfactant (as LAS), total nitrogen (as N)</td>
</tr>
<tr>
<td></td>
<td>Flow-weighted composite</td>
<td>Semiannually; 2 per year</td>
<td>Maximum flow, total flow, plus all of the above constituents except for pH and oil & grease</td>
</tr>
<tr>
<td>WNSWR01<sup>a</sup> Site rain gauge</td>
<td>Field measurement of precipitation</td>
<td>1 each storm water sampling event</td>
<td>pH</td>
</tr>
<tr>
<td>On-Site Surface Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNSWAMP Northeast swamp drainage</td>
<td>Timed continuous composite liquid</td>
<td>Biweekly; 26 per year</td>
<td>Gross alpha/beta, H-3, pH, flow (flow at WNSWAMP only)</td>
</tr>
<tr>
<td>WNSW74A North swamp drainage</td>
<td>Composite of biweekly samples</td>
<td>Monthly; 12 per year</td>
<td>Sr-90 and gamma isotopic</td>
</tr>
<tr>
<td></td>
<td>Composite of biweekly samples</td>
<td>Semiannually; 2 per year</td>
<td>C-14, I-129, U-232, U-233/234, U-235/236, U-238, total U, Pu-238, Pu-239/240, Am-241</td>
</tr>
<tr>
<td>WNSP005 Facility yard drainage</td>
<td>Grab liquid</td>
<td>Quarterly; 4 per year (WNFR67 and WNERB53 collected at same time as WNNDADR)</td>
<td>Gross alpha/beta, H-3, pH</td>
</tr>
<tr>
<td>WNFRC67 Franks Creek east of SDA</td>
<td>Composite of quarterly samples</td>
<td>Semiannually; 2 per year</td>
<td>Sr-90 and gamma isotopic</td>
</tr>
<tr>
<td>WNERB53 Erdman Brook north of disposal areas</td>
<td>Timed continuous composite liquid</td>
<td>Biweekly; 26 per year</td>
<td>Hold for composite</td>
</tr>
<tr>
<td></td>
<td>Composite of biweekly samples</td>
<td>Monthly; 12 per year</td>
<td>Gross alpha/beta, H-3, gamma isotopic</td>
</tr>
<tr>
<td></td>
<td>Composite of biweekly samples</td>
<td>Semiannually; 2 per year</td>
<td>Sr-90 and I-129</td>
</tr>
<tr>
<td>On-Site Potable [Drinking] Water: Surface Water Supply (January to September 2014)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNUURRAW / WNUURAW1 Utility room raw water (unfiltered and unchlorinated)</td>
<td>Grab liquid</td>
<td>Daily; 365 per year</td>
<td>Turbidity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weekly; 52 per year</td>
<td>Fe<sup>2+</sup>, TDS<sup>o</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Three samples during each Lagoon 3 (outfall 001) discharge (pre-discharge, near beginning and near end); approximately 12-24 per year</td>
<td>Fe<sup>2+</sup>, TDS<sup>o</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly; 4 per year</td>
<td>Total alkalinity, TOC</td>
</tr>
<tr>
<td>Raw, Filtered (filtered, not chlorinated)</td>
<td>Grab liquid</td>
<td>Six times per day; approximately 2190 per year</td>
<td>Turbidity</td>
</tr>
</tbody>
</table>

^a Required by SPDES Permit # NY0000973. Results reported in the monthly SPDES DMR and evaluated in this ASER.
Table A-2 (continued)

2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/ Medium</th>
<th>Collection Frequency/ Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site Potable (Drinking) Water: Surface Water Supply (January to September 2014) (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNDFILTR Utility room filtered, chlorinated potable water (storage tank)</td>
<td>Grab liquid</td>
<td>Three times per day; approximately 1095 per year</td>
<td>Residual chlorine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly: 4 per year</td>
<td>TOC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually: 1 per year</td>
<td>As, Ba, Be, Cd, Cr, Hg, Ni, Sb, Se, TI, cyanide, fluoride, nitrate (NO₃-N)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Once every 6 years</td>
<td>Principal Organic Contaminants (POCs)</td>
</tr>
<tr>
<td>WNDNKMP Main plant shower</td>
<td>Grab liquid</td>
<td>Annually; 1 per year</td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td>WNDFIN Utility room chlorinated potable water (storage tank)</td>
<td>Grab liquid</td>
<td>Daily; 365 per year</td>
<td>Residual chlorine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly; up to 4 per year²</td>
<td>POCs, DOCs, MTBE, vinyl chloride</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually; 1 per year</td>
<td>Na, nitrate (NO₃-N), nitrite (NO₂-N)²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Once every 3 years</td>
<td>Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Sb, Se, TI, cyanide (as free), fluoride, Pb and Cu</td>
</tr>
<tr>
<td>WNDFIN Utility room chlorinated potable water (storage tank)</td>
<td>Grab liquid</td>
<td>Monthly²; 12 per year</td>
<td>Total coliform, E. coli, nitrate (NO₃-N), residual chlorine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Once every three years³</td>
<td>Cu and Pb</td>
</tr>
<tr>
<td>WNDNURSE Modified System Sinks: WDNK06, 10, 13, 15, 23, WDNK10, WDNK13 WDNK15</td>
<td>Grab liquid</td>
<td>As needed⁴</td>
<td>Total coliform and E. coli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually; 1 per year</td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Once every 3 years</td>
<td>Total halocarbons and trihalomethanes</td>
</tr>
<tr>
<td>On-Site Potable (Drinking) Water: Groundwater Supply (September 2014 onward)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WDNWELL1 and WDNWELL2 Raw water at wellheads</td>
<td>Grab liquid</td>
<td>As needed⁴</td>
<td>Total coliform and E. coli</td>
</tr>
<tr>
<td>WDNRAW1, WDNRAW2 Utility room raw water (unfiltered, unchlorinated)</td>
<td>Grab liquid</td>
<td>Monthly; 12 per year</td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually; 1 per year</td>
<td>I-129 and gamma isotopic</td>
</tr>
<tr>
<td>WDNKMP Main plant shower</td>
<td>Grab liquid</td>
<td>Annually; 1 per year</td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td>WNDFIN Utility room chlorinated potable water (storage tank)</td>
<td>Grab liquid</td>
<td>Daily; 365 per year</td>
<td>Residual chlorine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly; up to 4 per year²</td>
<td>POCs, DOCs, MTBE, vinyl chloride</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annually; 1 per year</td>
<td>Na, nitrate (NO₃-N), nitrite (NO₂-N)²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Once every 3 years</td>
<td>Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Sb, Se, TI, cyanide (as free), fluoride, Pb and Cu</td>
</tr>
<tr>
<td>On-Site Potable (Drinking) Water: Source Water Protection Monitoring for Groundwater Supply (September 2014 onward)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrock monitoring wells: WNEHMKE south of MPPB WWCOURT south of Annex WNCT272 southeast of Warehouse</td>
<td>Grab liquid</td>
<td>Biweekly; 24 per year</td>
<td>Gross alpha/beta, pH and conductivity</td>
</tr>
</tbody>
</table>

¹ Distribution system sinks include: Guard house (WDNK06), Utility room (WDNK10), Vit Hill men’s room (WDNK13), Annex ladies’ room (WDNK15), TSB men’s room (WDNK23), RHWF (WDNKRH) and Nurse’s office (WDNURSE).
² One sample is collected by CCHD from one of four sinks (WDNK06, WDNK10, WDNK13 or WDNURSE) in the distribution system. The sampling location is rotated each month (when source was surface water) or each quarter (groundwater source).
³ Pb and Cu are sampled at five sinks (WDNK01, WDNK06, WDNK10, WDNK13 and WDNK15) every three years.
⁴ Samples are collected at the wellheads only if bacteriological parameters are detected in the distribution system.
⁵ POCs and Synthetic Organic Chemicals (SOCs) will be collected quarterly only during the first year of sampling, unless detected.
⁶ Only an initial sample for nitrite is required, unless it is detected at > 50% of the MCL.
TABLE A-2 (continued)
2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/Medium</th>
<th>Collection Frequency/Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLW2: SSWMU #1</td>
<td>Grab liquid</td>
<td>Quarterly during the fiscal year (generally(^a)); 4 per year</td>
<td>Gross alpha/beta, H-3. Select locations for radioisotopic analyses, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), or metals</td>
</tr>
<tr>
<td>Miscellaneous small units: SSWMU #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWTS: SSWMU #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLW and processing tank: SSWMU #4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance shop leach field: SSWMU #5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLW storage area: SSWMU #6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical process cell waste storage area: SSWMU #7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDDL: SSWMU #8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDA: SSWMU #9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRTS drum cell: SSWMU #10</td>
<td>Direct field measurement</td>
<td>Twice each sampling event; 8 per year for wells sampled quarterly</td>
<td>Conductivity, pH</td>
</tr>
<tr>
<td>RHWF (not in a SSWMU): (wells 1301, 1302, 1303, 1304)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Sampling frequency and analyses vary from point to point.
TABLE A-2 (continued)
2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/ Medium</th>
<th>Collection Frequency/ Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site Groundwater</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPPB downgradient wells (installed in 2010): (wells MP-01, MP-02, MP-03, MP-04)</td>
<td>Grab liquid</td>
<td>Quarterly during the fiscal year (generally*); 4 per year</td>
<td>Gross alpha/beta, H-3, Radioisotopic analyses, VOCs, SVOCs, metals, and turbidity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct field measurement</td>
<td>Twice each sampling event; 8 per year for wells sampled quarterly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conductivity, pH</td>
</tr>
<tr>
<td>North plateau seeps (not in a SSWMU): (points GSEEP, SP04, SP06, SP11, SP12)</td>
<td>Grab liquid</td>
<td>Semiannually (quarterly at GSEEP); 2 (or 4) per year</td>
<td>Gross alpha/beta, H-3 (also VOCs at GSEEP and SP12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct field measurement of sampled water</td>
<td>Semiannually at SP12 (quarterly at GSEEP); 2 (or 4) per year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pH, conductivity</td>
</tr>
<tr>
<td>PTWPMP wells: (58 PTW platform wells at stations 1-12, installed in 2010 [i.e. PTW-S1A, PTW-S1B and PTW-S1C] and 21 pre-existing full network wells (i.e. WP02, MW-5)</td>
<td>Grab liquid</td>
<td>Quarterly (annually at full network wells); 4 (or 1) per year at each location</td>
<td>Strontium-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grab liquid</td>
<td>Annually; 1 per year at each location</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct field measurement</td>
<td>Quarterly (annually at full network wells); 4 (or 1) per year at each location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conductivity, pH, temperature, oxidation-reduction potential, dissolved oxygen, and turbidity</td>
</tr>
<tr>
<td>NPGMP Wells: (25 north plateau wells)</td>
<td>Grab liquid</td>
<td>Quarterly; 4 per year at each location</td>
<td>Gross beta</td>
</tr>
<tr>
<td>Miscellaneous monitoring locations (not in a SSWMU): Well points WP-A, WP-C, WP-H</td>
<td>Grab liquid</td>
<td>Annually (quarterly at NB15); 1 (or 4) per year</td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct field measurement of sampled water</td>
<td>Annually (quarterly at NB15); 1 (or 4) per year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pH, conductivity</td>
</tr>
<tr>
<td>Surface water elevation points: (SE007, SE008, SE009, SE011)</td>
<td>Direct field measurement</td>
<td>Quarterly; 4 per year at each location</td>
<td>Water level</td>
</tr>
<tr>
<td>SDA (SSWMU #11)</td>
<td>Groundwater wells in SSWMU #11 are sampled by NYSERDA under a separate program. For information, see the NYSERDA website at www.nyserda.org.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Site Soil/Sediment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN on-site soil series; SNSW74A (near WNSW74A), SNSWAMP (near WNSWAMP), and SNSP006 (near WNSP006)</td>
<td>Surface plug composite soil/sediment</td>
<td>1 each location every five years (sampled in 2012, will next be sampled in 2017)</td>
<td>Gross alpha/beta, gamma isotopic, Sr-90, U-232, U-233/234, U-235/236, U-238, total U, Pu-238, Pu-239/240, Am-241</td>
</tr>
<tr>
<td>Off-Site Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF off-site soil series (collected at historical air sampling location[s]); SFFXVRD, SFRT240, SFRSPRD, SFGRVAL</td>
<td>Surface plug composite soil</td>
<td>1 each location every five years (sampled in 2012, will next be sampled in 2017)</td>
<td>Gross alpha/beta, Sr-90, gamma isotopic, Pu-238, Pu-239/240, Am-241. At nearest site (SFRSPRD) and background (SFGRVAL), also U-232, U-233/234, U-235/236, U-238, and total U</td>
</tr>
</tbody>
</table>

* Sampling frequency and analyses vary from point to point.
TABLE A-2 (continued)
2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/ Medium</th>
<th>Collection Frequency/ Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Site Sediment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFCCSED</td>
<td>Grab stream sediment</td>
<td>1 each location every five years (sampled in 2012, will next be sampled in 2017)</td>
<td>Gross alpha/beta, gamma isotopic, Sr-90, U-232, U-233/234, U-235/236, U-238, total U, Pu-238, Pu-239/240, Am-241</td>
</tr>
<tr>
<td>Cattaraugus Creek at Felton Bridge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFSDSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattaraugus Creek at Springville Dam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFTCSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttermilk Creek at Thomas Corners Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFBCSED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttermilk Creek at Fox Valley Road (background)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-Site Surface Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFBCKG</td>
<td>Timed continuous composite liquid</td>
<td>Biweekly; 26 per year</td>
<td>Hold for composite</td>
</tr>
<tr>
<td>Buttermilk Creek near Fox Valley (background)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composite of biweekly samples</td>
<td>Monthly; 12 per year</td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td></td>
<td>Composite of biweekly samples</td>
<td>Semiannually; 2 per year</td>
<td>C-14, Sr-90, Tc-99, I-129, U-232, U-233/234, U-235/236, U-238, total U, Pu-238, Pu-239/240, Am-241, gamma isotopic</td>
</tr>
<tr>
<td>WFFELBR</td>
<td>Timed continuous composite liquid</td>
<td>Weekly during lagoon 3 discharge, otherwise biweekly; Flow-weighted composite of weekly and biweekly samples</td>
<td>Gross alpha/beta, H-3, pH, flow</td>
</tr>
<tr>
<td>Cattaraugus Creek at Felton Bridge (downstream of confluence with Buttermilk Creek); nearest point of public access to waters receiving WVDP effluents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFBCTCB</td>
<td>Composite of biweekly samples</td>
<td>Monthly; 12 per year</td>
<td>Gross alpha/beta, H-3</td>
</tr>
<tr>
<td>Buttermilk Creek at Thomas Corners Road, downstream of WVDP and upstream of confluence with Cattaraugus Creek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Composite of biweekly samples</td>
<td>Semiannually; 2 per year</td>
<td>Sr-90, gamma isotopic</td>
</tr>
<tr>
<td></td>
<td>Grab liquid</td>
<td>Monthly; 12 per year</td>
<td>Hardness (Ca and Mg)</td>
</tr>
<tr>
<td></td>
<td>Grab liquid</td>
<td>Semiannually; 2 per year</td>
<td>Temperature (field), pH (field), dissolved oxygen (field), TOX, oil & grease, total Hg (method 1631)</td>
</tr>
<tr>
<td></td>
<td>24-hour timed continuous composite</td>
<td>Semiannually; 2 per year</td>
<td>TSS, TDS, NPOC, NH$_4$ (as N), NO$_3$ (as N), NO$_2$ (as N), bromide, fluoride, sulfate, total sulfide, surfactant (as LAS), alpha-BHC, B, Ba, Co, Fe, Na, Mn, Sb, Ti, Ti, V, dissolved Al, As, Cd, Cr, Cu, Ni, Pb, Se, Zn</td>
</tr>
</tbody>
</table>

* Samples are collected when point WNSP001 is discharging when possible.
TABLE A-2 (continued)
2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/Medium</th>
<th>Collection Frequency/Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Site Ambient Air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF01_N</td>
<td>Glass fiber filters for air particulates</td>
<td>Biweekly; 26 per year</td>
<td>Gross alpha/beta screening, flow; Hold for composite</td>
</tr>
<tr>
<td>North at Bond Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF02_NNE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North-northeast at Rt. 240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF03_NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast at Rt. 240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF04_ENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East-northeast at Rt. 240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF05_E</td>
<td>Charcoal cartridge for iodine</td>
<td>Monthly; 12 per year</td>
<td>I-129 screening, flow; Hold for composite</td>
</tr>
<tr>
<td>East at Heinz Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF06_ESE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East-southeast at Buttermilk Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF07_SE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southeast at Fox Valley Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF08_SSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South-southeast at Fox Valley Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF09_S</td>
<td>Composite of biweekly glass fiber filters</td>
<td>Quarterly; 4 per year</td>
<td>Sr-90, Cs-137, U-232, Pu-238, Pu-239/240, Am-241, flow</td>
</tr>
<tr>
<td>South at Rock Springs Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF10_SSW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South-southwest at Dutch Hill Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF11_SW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southwest at Dutch Hill Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF12_WSW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West-southwest at Dutch Hill Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF13_W</td>
<td>Composite of monthly charcoal</td>
<td>Quarterly; 4 per year</td>
<td>I-129, flow</td>
</tr>
<tr>
<td>West at Dutch Hill Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF14_WNW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West-northwest at Boberg Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF15_NW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northwest at Rock Springs Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF16_NNW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North-northwest at Rock Springs Road</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-2 (continued)
2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/ Medium</th>
<th>Collection Frequency/ Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Site Ambient Air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF16HNNW</td>
<td>Glass fiber filters for air particulates</td>
<td>Biweekly; 26 per year</td>
<td>Gross alpha/beta screening, flow; Hold for composite</td>
</tr>
<tr>
<td></td>
<td>Composite of biweekly glass fiber filters</td>
<td>Quarterly; 4 per year</td>
<td>Sr-90, Cs-137, U-232, Pu-238, Pu-239/240, Am-241, flow</td>
</tr>
<tr>
<td>AFGRVAL</td>
<td>Glass fiber filter for air particulates</td>
<td>Biweekly; 26 per year</td>
<td>Gross alpha/beta screening, flow; Hold for composite</td>
</tr>
<tr>
<td>29 km south at Great Valley (background)</td>
<td>Charcoal cartridge for iodine</td>
<td>Monthly; 12 per year</td>
<td>I-129 screening, flow; Hold for composite</td>
</tr>
<tr>
<td></td>
<td>Composite of monthly charcoal</td>
<td>Quarterly; 4 per year</td>
<td>I-129, flow</td>
</tr>
<tr>
<td></td>
<td>Composite of biweekly glass fiber filters</td>
<td>Quarterly; 4 per year</td>
<td>Sr-90, gamma isotopic, U-232, U-233/234, U-235/236, U-238, total U, Pu-238, Pu-239/240, Am-241, flow</td>
</tr>
<tr>
<td>Off-Site Biological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFMFLDMN</td>
<td>Grab milk sample</td>
<td>Annual; 1 per year</td>
<td>Sr-90, I-129, gamma isotopic</td>
</tr>
<tr>
<td>Dairy farm 5.1 km southeast of WVDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFMCTLS</td>
<td>Grab milk sample</td>
<td>Each location and background, once every five years (sampled in 2012, will next be sampled in 2017)</td>
<td>Sr-90, I-129, gamma isotopic</td>
</tr>
<tr>
<td>Control location 22 km south (background)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFMBSLY</td>
<td>Individual collection of venison samples, usually from deer killed in collisions with vehicles</td>
<td>Six deer collected annually during hunting season (3 near-site, 3 background)</td>
<td>Gamma isotopic and Sr-90 in edible portions of meat, % moisture, H-3 in free moisture</td>
</tr>
<tr>
<td>Dairy farm 5.5 km west-northwest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFMSCHT</td>
<td>Grab biological</td>
<td>Each food crop and background, once every five years at time of harvest (sampled in 2012, will next be sampled in 2017)</td>
<td>Gamma isotopic and Sr-90 in edible portions, % moisture, H-3 in free moisture</td>
</tr>
<tr>
<td>Dairy farm 4.9 km south</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFDNEAR</td>
<td>Deer in the vicinity of the WVDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFDCTRL</td>
<td>Control deer 16 km or more from the WVDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFVNEAR</td>
<td>Apples, beans, and corn from locations near the WVDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFVCTRL</td>
<td>Control apples, beans, and corn from locations far from the WVDP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-2 (concluded)
2014 Environmental Monitoring Program

<table>
<thead>
<tr>
<th>Sample Location Code</th>
<th>Sampling Type/Medium</th>
<th>Collection Frequency/Total Annual Samples</th>
<th>Measurements/Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFFCATC</td>
<td>Fish from Cattaraugus Creek downstream of its confluence with Buttermilk Creek</td>
<td>Individual collection of fish</td>
<td>Once every 5 years; 10 fish from each location (sampled in 2012, will next be sampled in 2017)</td>
</tr>
<tr>
<td>BFFCATD</td>
<td>Fish from Cattaraugus Creek downstream of the Springville Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFFCTRL</td>
<td>Control fish sample from nearby stream not affected by WVDP (7 km or more upstream of site effluent point); background</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFTLD Series: Off-site environmental thermoluminescent dosimeters (TLDs): #1 through #16, at each of 16 compass sectors at nearest accessible perimeter point</td>
<td>Integrating TLD</td>
<td>Semiannually; 2 per year at each location</td>
<td>Gamma radiation exposure</td>
</tr>
<tr>
<td>#20: 1,500 m northwest (downwind receptor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#23: 29 km south, Great Valley (background)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNTLD Series: On-site TLDs</td>
<td>Integrating TLD</td>
<td>Semiannually; 2 per year at each location</td>
<td>Gamma radiation exposure</td>
</tr>
<tr>
<td>#33: Corner of the SDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#24, #28, #44<sup>a</sup>: Security fence around the WVDP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#32, #34<sup>b</sup>, #35, #36: Drum Cell road and Drum Cell south fence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#38, #40: Near operational areas on-site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#43: SDA west perimeter fence and</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a TLD #44 was added on the Rock Springs Road security fence in 2014, to monitor the HLW canister storage pad.

^b TLD #34 was discontinued in March 2015.
Summary of Monitoring Program Changes in 2014

Description of Changes

There were no major changes to the overall environmental sampling program during 2014. There were however, several minor changes.

CY 2014 was the second full year of sampling the new ambient air network.

The drinking water supply source changed in the fall of 2014. Until September of 2014, site drinking water was supplied by surface water from reservoirs 1 and 2, as in previous years. On September 18, 2014, the drinking water supply was changed to a groundwater source, supplied by two newly installed groundwater wells completed in fractured bedrock. As a result of this change, the sampling locations, sampling frequencies, and the parameters analyzed for were changed under the drinking water monitoring program for the last quarter of 2014 due to different regulatory monitoring requirements for drinking water from a groundwater source. Since both monitoring programs were followed in 2014, both sampling programs are described in Table A-2. Appendix B-6 provides the drinking water data collected under both monitoring programs during CY 2014.

With the transfer from surface to groundwater for a water supply, the generation of several non-radiological wastewater streams was eliminated. Discharges through the wastewater plant were discontinued in October 2014. Consequently, sampling of the sanitary waste discharge at WNSP007 under the SPDES program was discontinued in November 2014.

In early 2014, a new TLD was deployed along Rock Springs Road on the property fence nearest the southwest corner of the HLW storage pad to monitor environmental radiation from this area. Data from this location is included in both semi-annual sampling rounds for CY 2014.

The environmental monitoring program requires the collection of soils, aquatic sediments, milk (from multiple locations), apples, beans, corn, beans, corn, and fish every five years. These environmental matrices (with the exception of milk which is still done at one location every year) were sampled in 2012 and will not be sampled again until 2017.
FIGURE A-1
West Valley Demonstration Project Base Map
FIGURE A-2
On-Site Surface Water and Soil/Sediment Sampling Locations

Sampling from location WNSP007 was discontinued in November 2014 when discharges from this outfall were suspended.
FIGURE A-3
On-Site Storm Water Outfalls

Legend
- Storm Water Outfall
- Rain Gauge Location
- WVDP Fence
- WVDP Railspur
- WVDP Property Boundary
- Wetlands Delineation
- Location Sampled Routinely
FIGURE A-5
Off-Site Surface Water and Soil/Sediment Sampling Locations

Legend

- Soil/Sediment Sampling Location
- Water Sampling Location
- WVDP Property Boundary
- WNYNSC Property Boundary
- Location Sampled Routinely
- Periodic Confirmatory Sampling

The map illustrates the locations of soil/sediment and water sampling within the WVDP and WNYNSC properties. Sampling locations are indicated by symbols, with specific names and distances to nearby locations such as Buttermilk Creek, Cattaraugus Creek, and Gooseneck Creek. The WVDP Property Boundary is highlighted in yellow, while the WNYNSC Property Boundary is in light blue. Additionally, the map shows the state-licensed disposal area and bulk storage warehouse within the WVDP property. The map also indicates the direction and distances to various locations, such as To Nashville (39.8 km), To Springville (9.4 km), To Great Valley (29 km), and To West Valley (6.2 km). The names of specific sampling locations, such as WFFELBR, SFCSED, SFRSPRD, and SFR240, are placed at the respective locations on the map.
FIGURE A-6
On-Site Air Monitoring and Sampling Locations

a ANCSRFK has been inactive since 2005. CSRF ventilation was replaced with a PVU from 2009-2013.
b ANCSPFK was shut down temporarily in October 2014.
FIGURE A-7
Off-Site Ambient Air Monitoring and Sampling Locations
FIGURE A-8
Drinking Water Supply Wells and
Source Water Protection Monitoring Network

Legend
- Drinking Water Sampling Location
- Drinking Water Supply Well
- Source Water Protection Monitoring Well
- WVDP Property Boundary
- WVDP Railspur
- WVDP Fence
- Wetlands Delineation

NRC-Licensed Disposal Area (NDA)
HLW Cask Storage Pad
Meteorological Tower

J:/GIS/ArcMap/ASER/ASER_2014/ASER_2014_FigA08_20141211.mxd, 8/5/2015 afs
FIGURE A-10
South Plateau Groundwater Monitoring Network

Note: The SDA monitoring wells are under NYSERDA's cognizance. For information see the NYSERDA website at www.nyserda.ny.gov
FIGURE A-11
Biological Sampling Locations

[Map showing various sampling locations with labels and descriptions]

Legend:
- NEAR-SITE BIOLOGICAL
- WNYNSC Property Boundary
- WVDP Property Boundary
- Location Sampled Routinely
- Periodic Confirmatory Sampling

Background sampling locations shown on Figure A-14:
- BFMCTL = Milk
- BFDCTRL = Venison
- BFVCTRL = Food Crops
- BFFCTRL = Fish

J:/GIS/ArcMap/ASER/ASER_2014/ASER_2014_FigA11_20141211.mxd, r1, 2/10/2015 skw/afs
FIGURE A-12
Location of On-Site / Near-Site Thermoluminescent Dosimeters (TLDs)
FIGURE A-13
Location of Off-Site Thermoluminescent Dosimeters (TLDs) Within 5 Kilometers of the WVDP
FIGURE A-14
Environmental Sampling Locations More Than 5 Kilometers From the WVDP

Legend
- WVDP
- Thermoluminescent Dosimeter
- Air Sampler
- Biological Sampling Point
- Soil Sampling Point
- Location Sampled Routinely
- Periodic Confirmatory Sampling

J:/GIS/ArcMap/ASER/ASER_2014/ASER_2014_FigA14_20141211.mxd, 12/11/2014 skw/afs
FIGURE A-15
Population by Sector Within 80 Kilometers of the WVDP (2002 Estimate)

Legend
6812 = Population by Sector and Distance
References:
5-80 km radius of WVDP, 2010 U.S. Census (4CGeoworks)
0-5 km radius of WVDP, ground truthed (URS, 2002 and 2008)
Canadian Population (2011 Canadian Census, 4CGeoworks)

*Note: Total population within 5 km = 1056.
APPENDIX B-1

Summary of Water Limits, Guidelines, and Standards

TABLE B-1A

West Valley Demonstration Project
State Pollutant Discharge Elimination System (SPDES) Sampling Program

<table>
<thead>
<tr>
<th>Outfall 001; Process and Storm Wastewater</th>
<th>Parameter</th>
<th>Effluent Limit</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>Monitor - MGD</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>4.0 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Ammonia as (NH₃)</td>
<td>2.1 mg/L</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6.5–8.5 SU</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen (DO)</td>
<td>3.0 mg/L (minimum)</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>Oil and grease</td>
<td>15.0 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Solids, total suspended</td>
<td>45 mg/L</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>Solids, Settleable</td>
<td>0.3 ml/L</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>Solids, Total dissolved</td>
<td>Monitor</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>BOD₅</td>
<td>10.0 mg/L</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>TKN (as N)</td>
<td>Monitor</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>Monitor</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Nitrite (as N)</td>
<td>0.1 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Ultimate oxygen demand (UOD)</td>
<td>22.0 mg/L</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>Chlorine, total residual</td>
<td>0.1 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Arsenic, total recoverable</td>
<td>0.15 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Cadmium, total recoverable</td>
<td>0.002 mg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Iron, total</td>
<td>Monitor</td>
<td>2/batch</td>
<td></td>
</tr>
<tr>
<td>Chromium, total recoverable</td>
<td>0.11 mg/L</td>
<td>2/year</td>
<td></td>
</tr>
<tr>
<td>Chromium, hexavalent, total recoverable</td>
<td>0.011 mg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Copper, total recoverable</td>
<td>0.014 mg/L</td>
<td>2/year</td>
<td></td>
</tr>
<tr>
<td>Cyanide, amenable to chlorination</td>
<td>0.005 mg/L</td>
<td>2/year</td>
<td></td>
</tr>
<tr>
<td>Manganese, total</td>
<td>2.0 mg/L</td>
<td>2/year</td>
<td></td>
</tr>
<tr>
<td>Lead, total recoverable</td>
<td>0.006 mg/L</td>
<td>2/year</td>
<td></td>
</tr>
<tr>
<td>Nickel, total</td>
<td>0.079 mg/L</td>
<td>2/year</td>
<td></td>
</tr>
<tr>
<td>Selenium, total recoverable</td>
<td>0.004 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>Monitor</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Sulfide, dissolved</td>
<td>0.4 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Cobalt, total recoverable</td>
<td>0.005 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Vanadium, total recoverable</td>
<td>0.014 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Zinc, total recoverable</td>
<td>0.13 mg/L</td>
<td>2/year</td>
<td></td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>0.01 mg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.01 mg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>3,3-Dichlorobenzidine</td>
<td>0.01 mg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Tributylphosphate</td>
<td>0.1 mg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>0.01 µg/L</td>
<td>2/year</td>
<td></td>
</tr>
<tr>
<td>Surfactant (as LAS)</td>
<td>0.04 mg/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>0.05 mg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>2-butane</td>
<td>0.5 mg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>0.2 µg/L</td>
<td>1/year</td>
<td></td>
</tr>
<tr>
<td>Mercury, total</td>
<td>50 ng/L</td>
<td>1/batch</td>
<td></td>
</tr>
<tr>
<td>Alpha - BHC</td>
<td>0.01 µg/L</td>
<td>1/year</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B-1A (continued)

West Valley Demonstration Project

State Pollutant Discharge Elimination System (SPDES) Sampling Program

<table>
<thead>
<tr>
<th>Outfall 001</th>
<th>Parameter</th>
<th>Action Levels</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>001; Process and Storm Wastewater</td>
<td>Antimony</td>
<td>1.0 mg/L</td>
<td>1/year</td>
</tr>
<tr>
<td></td>
<td>Barium</td>
<td>0.5 mg/L</td>
<td>1/year</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>2.0 mg/L</td>
<td>2/year</td>
</tr>
<tr>
<td></td>
<td>Bromide</td>
<td>5.0 mg/L</td>
<td>2/year</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>0.3 mg/L</td>
<td>1/year</td>
</tr>
<tr>
<td></td>
<td>Titanium</td>
<td>0.65 mg/L</td>
<td>2/year</td>
</tr>
</tbody>
</table>

Whole Effluent Toxicity (WET) Testing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Action Levels</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>WET - Acute Invertebrate</td>
<td>0.3 TUa</td>
<td>4/year</td>
</tr>
<tr>
<td>WET - Acute Vertebrate</td>
<td>0.3 TUa</td>
<td>4/year</td>
</tr>
<tr>
<td>WET - Chronic Invertebrate</td>
<td>1.0 TUc</td>
<td>4/year</td>
</tr>
<tr>
<td>WET - Chronic Vertebrate</td>
<td>1.0 TUc</td>
<td>4/year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outfall 007</th>
<th>Parameter</th>
<th>Effluent Limit</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>007; Sanitary and Utility Wastewater</td>
<td>pH</td>
<td>6.5–8.5 SU</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>Dissolved oxygen (DO)</td>
<td>3.0 mg/L (minimum)</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>Flow</td>
<td>Monitor - MGD</td>
<td>1/month</td>
</tr>
<tr>
<td></td>
<td>Oil and Grease</td>
<td>15.0 mg/L</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>Solids, total suspended</td>
<td>45 mg/L</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>Solids, settleable</td>
<td>0.3 ml/L</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>Solids, total dissolved</td>
<td>Monitor</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>(\text{BOD}_5)</td>
<td>10.0 mg/L</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>Ammonia (as NH₃)</td>
<td>2.1 mg/L</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>TKN (as N)</td>
<td>Monitor</td>
<td>1/month</td>
</tr>
<tr>
<td></td>
<td>Nitrite (as N)</td>
<td>0.1 mg/L</td>
<td>1/month</td>
</tr>
<tr>
<td></td>
<td>Ultimate oxygen demand (UOD)</td>
<td>22.0 mg/L</td>
<td>1/month</td>
</tr>
<tr>
<td></td>
<td>Iron, total</td>
<td>Monitor</td>
<td>2/month</td>
</tr>
<tr>
<td></td>
<td>Chlorine, total residual</td>
<td>0.1 mg/L</td>
<td>1/month</td>
</tr>
<tr>
<td></td>
<td>Mercury, total</td>
<td>50 ng/L</td>
<td>1/month</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>0.20 mg/L</td>
<td>1/year</td>
</tr>
</tbody>
</table>

Whole Effluent Toxicity (WET) Testing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Action Levels</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>WET - Acute Invertebrate</td>
<td>0.3 TUa</td>
<td>4/year</td>
</tr>
<tr>
<td>WET - Acute Vertebrate</td>
<td>0.3 TUa</td>
<td>4/year</td>
</tr>
<tr>
<td>WET - Chronic Invertebrate</td>
<td>1.0 TUc</td>
<td>4/year</td>
</tr>
<tr>
<td>WET - Chronic Vertebrate</td>
<td>1.0 TUc</td>
<td>4/year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outfall 01B</th>
<th>Parameter</th>
<th>Effluent Limit</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>01B<sup>b</sup>; Mercury Pre-Treatment Process</td>
<td>Flow</td>
<td>Monitor - MGD</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td>Mercury, total</td>
<td>Monitor - 50 ng/L</td>
<td>2/batch</td>
</tr>
</tbody>
</table>

Sum of Outfalls

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Effluent Limit</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 and 007</td>
<td>Iron, total</td>
<td>Monitor - 1.0 mg/L</td>
</tr>
</tbody>
</table>

^a WET testing is only required every five years. WET testing was performed in 2012 and will be performed again in 2017.

^b WNSP01B did not operate in 2014.
TABLE B-1A (concluded)
West Valley Demonstration Project
State Pollutant Discharge Elimination System (SPDES) Sampling Program

<table>
<thead>
<tr>
<th>Monitoring Point</th>
<th>Parameter</th>
<th>Effluent Limit</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>Solids, total dissolved</td>
<td>Monitor - 500 mg/L</td>
<td>2/discharge event</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring Point</th>
<th>Parameter</th>
<th>Compliance Limit</th>
<th>Sample Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stormwater Outfalls (All)</td>
<td>Oil & grease</td>
<td><15 mg/L</td>
<td>1/event</td>
</tr>
<tr>
<td>Outfall S43</td>
<td>Lead, total recoverable</td>
<td>0.006 mg/L</td>
<td>1/event</td>
</tr>
</tbody>
</table>
TABLE B-1B
New York State Water Quality Standards and Guidelines

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
<th>Class GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>pCi/L (µCi/mL)</td>
<td>15 (1.5E-08)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>15 (1.5E-08)</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>pCi/L (µCi/mL)</td>
<td>1,000 (1E-06)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1,000 (1E-06)</td>
</tr>
<tr>
<td>Tritium (H-3)</td>
<td>pCi/L (µCi/mL)</td>
<td>20,000 (2E-05)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>pCi/L (µCi/mL)</td>
<td>8 (8E-09)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Alpha BHC</td>
<td>mg/L</td>
<td>0.000002</td>
<td>0.000002</td>
<td>0.000002</td>
<td>0.000002</td>
<td>0.0001</td>
</tr>
<tr>
<td>Aluminum, Ionic</td>
<td>mg/L</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ammonia, Total as N</td>
<td>mg/L</td>
<td>0.09–2.1</td>
<td>0.09–2.1</td>
<td>0.09–2.1</td>
<td>0.67–29</td>
<td>2.0</td>
</tr>
<tr>
<td>Antimony, Total</td>
<td>mg/L</td>
<td>0.003</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Arsenic, Dissolved</td>
<td>mg/L</td>
<td>0.050</td>
<td>0.15</td>
<td>0.15</td>
<td>0.34</td>
<td>--</td>
</tr>
<tr>
<td>Arsenic, Total</td>
<td>mg/L</td>
<td>0.050</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.025</td>
</tr>
<tr>
<td>Barium, Total</td>
<td>mg/L</td>
<td>1.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>Beryllium, Total</td>
<td>mg/L</td>
<td>0.003</td>
<td>d</td>
<td>d</td>
<td>--</td>
<td>0.003</td>
</tr>
<tr>
<td>Boron, Total</td>
<td>mg/L</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>Bromide</td>
<td>mg/L</td>
<td>2.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.0</td>
</tr>
<tr>
<td>Cadmium, Dissolved</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cadmium, Total</td>
<td>mg/L</td>
<td>0.005</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.005</td>
</tr>
<tr>
<td>Calcium, Total</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>250</td>
</tr>
<tr>
<td>Chromium, Dissolved</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chromium, Total</td>
<td>mg/L</td>
<td>0.05</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.05</td>
</tr>
<tr>
<td>Cobalt, Total</td>
<td>mg/L</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.11</td>
<td>--</td>
</tr>
<tr>
<td>Conductivity</td>
<td>µmhos/cm@25°C</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Copper, Dissolved</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Copper, Total</td>
<td>mg/L</td>
<td>0.20</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.20</td>
</tr>
<tr>
<td>Cyanide</td>
<td>mg/L</td>
<td>0.0052</td>
<td>0.0052</td>
<td>0.0052</td>
<td>0.022</td>
<td>0.200</td>
</tr>
<tr>
<td>Dissolved Oxygen (minimum)</td>
<td>mg/L</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>3.0</td>
<td>--</td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1.5</td>
</tr>
<tr>
<td>Hardness</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Iron and Manganese (sum)</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.50</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>mg/L</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Note: All water quality and metals standards are presented in mg/L (ppm) to provide consistency in comparisons.

- **a** Source: 6 NYCRR Part 702 - 704; The most stringent applicable pathway (e.g., wildlife, aquatic, human health) values are reported.
- **b** Gross alpha standard excludes radon and uranium, however WVDP results include uranium.
- **c** Gross beta standard excludes strontium-90 and alpha emitters, however WVDP results include these isotopes.
- **d** Beryllium standard for classes "B" and "C" are based on stream hardness values.
- **e** Standards for these constituents vary according to stream location hardness values.
- **f** Standards for cobalt, thallium, and vanadium are applicable to the acid soluble fraction.
- **g** Applies to the sum of those organic substances which have individual human health water source standards listed at 0.100 mg/L or less in 6 NYCRR Part 703.5.
- **h** pH shall not be lower than 6.5 or the pH of natural groundwater, whichever is lower, nor shall pH be greater than 8.5 or the pH of the natural groundwater, whichever is greater.
TABLE B-1B (concluded)
New York State Water Quality Standards and Guidelines

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
<th>Class GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead, Dissolved</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Lead, Total</td>
<td>mg/L</td>
<td>0.050</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.025</td>
</tr>
<tr>
<td>Magnesium, Total</td>
<td>mg/L</td>
<td>35</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>35</td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>mg/L</td>
<td>0.30</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.30</td>
</tr>
<tr>
<td>Mercury, Dissolved</td>
<td>mg/L</td>
<td>0.0000007</td>
<td>0.0000007</td>
<td>0.0000007</td>
<td>0.0000007</td>
<td>--</td>
</tr>
<tr>
<td>Mercury, Total</td>
<td>mg/L</td>
<td>0.0007</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.0007</td>
</tr>
<tr>
<td>Nickel, Dissolved</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nickel, Total</td>
<td>mg/L</td>
<td>0.10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.10</td>
</tr>
<tr>
<td>Nitrate-N</td>
<td>mg/L</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>Nitrate + Nitrite</td>
<td>mg/L</td>
<td>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>Nitrite-N</td>
<td>mg/L</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>--</td>
<td>1.0</td>
</tr>
<tr>
<td>NPOC</td>
<td>mg/L</td>
<td>0.10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Oil & Grease</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>6.5–8.5</td>
<td>6.5–8.5</td>
<td>6.5–8.5</td>
<td>6.0–9.5</td>
<td>6.5–8.5</td>
</tr>
<tr>
<td>Potassium, Total</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Selenium, Dissolved</td>
<td>mg/L</td>
<td>0.0046</td>
<td>0.0046</td>
<td>0.0046</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Selenium, Total</td>
<td>mg/L</td>
<td>0.01</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.01</td>
</tr>
<tr>
<td>Silver, Total</td>
<td>mg/L</td>
<td>0.05</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.05</td>
</tr>
<tr>
<td>Sodium, Total</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>20</td>
</tr>
<tr>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>--</td>
<td>500</td>
</tr>
<tr>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>250</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>250</td>
</tr>
<tr>
<td>Sulfide (undissociated form)</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>--</td>
<td>0.050</td>
</tr>
<tr>
<td>Surfactants (as LAS)</td>
<td>mg/L</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Thallium, Total</td>
<td>mg/L</td>
<td>0.0005</td>
<td>0.008</td>
<td>0.008</td>
<td>0.020</td>
<td>0.0005</td>
</tr>
<tr>
<td>Titanium, Total</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>TOX (total organic halides)</td>
<td>mg/L</td>
<td>0.10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Vanadium, Total</td>
<td>mg/L</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.19</td>
<td>--</td>
</tr>
<tr>
<td>Zinc, Dissolved</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Zinc, Total</td>
<td>mg/L</td>
<td>2.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.0</td>
</tr>
</tbody>
</table>

No applicable guideline or reference standard available.

Note: All water quality and metals standards are presented in mg/L (ppm) to provide consistency in comparisons.

a Source: 6 NYCRR Part 702 - 704; The most stringent applicable pathway (e.g., wildlife, aquatic, human health) values are reported.

b Gross alpha standard excludes radon and uranium, however WVDP results include uranium.

c Gross beta standard excludes strontium-90 and alpha emitters, however WVDP results include these isotopes.

d Beryllium standard for classes "B" and "C" are based on stream hardness values.

e Standards for these constituents vary according to stream location hardness values.

f Standards for cobalt, thallium, and vanadium are applicable to the acid soluble fraction.

g Applies to the sum of those organic substances which have individual human health water source standards listed at 0.100 mg/L or less in 6 NYCRR Part 703.5.
h pH shall not be lower than 6.5 or the pH of natural groundwater, whichever is lower, nor shall pH be greater than 8.5 or the pH of the natural groundwater, whichever is greater.
TABLE B-1C

New York State Department of Health/U.S. EPA

Potable Water MCLs, MCLGs and Raw Water Standards for Surface Water Supply Source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>NYSDOH or EPA MCL</th>
<th>EPA MCL</th>
<th>NYSDOH Raw Water Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>pCi/L (µCi/mL)</td>
<td>15 (1.5E-08)</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>pCi/L (µCi/mL)</td>
<td>50 (5E-08)</td>
<td>0</td>
<td>1,000 (1E-06)</td>
</tr>
<tr>
<td>Tritium (H-3)</td>
<td>pCi/L (µCi/mL)</td>
<td>20,000 (2E-05)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>pCi/L (µCi/mL)</td>
<td>8 (8E-09)</td>
<td>--</td>
<td>10 (1E-08)</td>
</tr>
<tr>
<td>Antimony, Total</td>
<td>mg/L</td>
<td>0.006</td>
<td>0.006</td>
<td>--</td>
</tr>
<tr>
<td>Arsenic, Total</td>
<td>mg/L</td>
<td>0.010</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Barium, Total</td>
<td>mg/L</td>
<td>2.00</td>
<td>2.00</td>
<td>1.0</td>
</tr>
<tr>
<td>Beryllium, Total</td>
<td>mg/L</td>
<td>0.004</td>
<td>0.004</td>
<td>--</td>
</tr>
<tr>
<td>Cadmium, Total</td>
<td>mg/L</td>
<td>0.005</td>
<td>0.005</td>
<td>0.01</td>
</tr>
<tr>
<td>Chromium, Total</td>
<td>mg/L</td>
<td>0.10</td>
<td>0.10</td>
<td>--</td>
</tr>
<tr>
<td>Conductivity</td>
<td>µmhos/cm@25°C</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Copper, Total</td>
<td>mg/L</td>
<td>1.3</td>
<td>1.3</td>
<td><0.2</td>
</tr>
<tr>
<td>Cyanide</td>
<td>mg/L</td>
<td>0.2</td>
<td>0.2</td>
<td><0.1</td>
</tr>
<tr>
<td>E. Coli</td>
<td>NA</td>
<td>one positive sample</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/L</td>
<td>2.2</td>
<td>4</td>
<td><1.5</td>
</tr>
<tr>
<td>Free Residual Chlorine</td>
<td>mg/L</td>
<td>0.2 (min) 4.0 (max)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Haloacetic Acids-Five (5)</td>
<td>mg/L</td>
<td>0.06</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>mg/L</td>
<td>0.3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Lead, Total</td>
<td>mg/L</td>
<td>0.015</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Mercury, Total</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>Nickel, Total</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Nitrate-N</td>
<td>mg/L</td>
<td>10</td>
<td>10</td>
<td>--</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>--</td>
<td>--</td>
<td>6.5–8.5</td>
</tr>
<tr>
<td>POC (Principal Organic Contaminant)</td>
<td>mg/L</td>
<td>0.005</td>
<td>0.0005</td>
<td>--</td>
</tr>
<tr>
<td>Selenium, Total</td>
<td>mg/L</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>--</td>
<td>--</td>
<td>500</td>
</tr>
<tr>
<td>Thallium, Total</td>
<td>mg/L</td>
<td>0.002</td>
<td>0.0005</td>
<td>--</td>
</tr>
<tr>
<td>Total Coliform</td>
<td>NA</td>
<td>2 or more positive samples</td>
<td>0</td>
<td>50 per 100 mL</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>mg/L</td>
<td>0.08</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>1 (max)</td>
<td>--</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: All water quality and metals standards are presented in mg/L (ppm) to provide consistency in comparisons.

-- No applicable guideline or reference standard available.
NA - Not applicable.

a MCL - Listed is NYSDOH or EPA Maximum Contaminant Levels. Sources: 40 CFR Part 141and/or10 NYCRR part 5, Subpart 5-1, Section 5-1.52, whichever is most stringent.
b MCLG - Maximum Contaminant Level Goal (non-enforceable) as listed in 40 CFR Part 141.
c Source: 10 NYCRR Part 170.4
d Alpha guideline includes radium-226 but excludes radon and uranium, however WVDP results include these isotopes.
e Average annual concentration assumed to produce a total body organ dose of 4 mrem/yr.
f Value shown is a 90th percentile Action Level.
TABLE B-1D

Department of Energy (DOE)

Derived Concentration Standards (DCS)

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Units</th>
<th>Concentration in Ingested Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha (as U-232)</td>
<td>µCi/mL</td>
<td>9.8E-08</td>
</tr>
<tr>
<td>Gross Beta (as Sr-90)</td>
<td>µCi/mL</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>Tritium (H-3)</td>
<td>µCi/mL</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>Carbon-14 (C-14)</td>
<td>µCi/mL</td>
<td>6.2E-05</td>
</tr>
<tr>
<td>Potassium-40 (K-40)</td>
<td>µCi/mL</td>
<td>4.8E-06</td>
</tr>
<tr>
<td>Cobalt-60 (Co-60)</td>
<td>µCi/mL</td>
<td>7.2E-06</td>
</tr>
<tr>
<td>Strontium-90 (Sr-90)</td>
<td>µCi/mL</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>Technetium-99 (Tc-99)</td>
<td>µCi/mL</td>
<td>4.4E-05</td>
</tr>
<tr>
<td>Iodine-129 (I-129)</td>
<td>µCi/mL</td>
<td>3.3E-07</td>
</tr>
<tr>
<td>Cesium-137 (Cs-137)</td>
<td>µCi/mL</td>
<td>3.0E-06</td>
</tr>
<tr>
<td>Europium-154 (Eu-154)</td>
<td>µCi/mL</td>
<td>1.5E-05</td>
</tr>
<tr>
<td>Uranium-232 (U-232)</td>
<td>µCi/mL</td>
<td>9.8E-08</td>
</tr>
<tr>
<td>Uranium-233 (U-233)</td>
<td>µCi/mL</td>
<td>6.6E-07</td>
</tr>
<tr>
<td>Uranium-234 (U-234)</td>
<td>µCi/mL</td>
<td>6.8E-07</td>
</tr>
<tr>
<td>Uranium-235 (U-235)</td>
<td>µCi/mL</td>
<td>7.2E-07</td>
</tr>
<tr>
<td>Uranium-236 (U-236)</td>
<td>µCi/mL</td>
<td>7.2E-07</td>
</tr>
<tr>
<td>Uranium-238 (U-238)</td>
<td>µCi/mL</td>
<td>7.5E-07</td>
</tr>
<tr>
<td>Plutonium-238 (Pu-238)</td>
<td>µCi/mL</td>
<td>1.5E-07</td>
</tr>
<tr>
<td>Plutonium-239 (Pu-239)</td>
<td>µCi/mL</td>
<td>1.4E-07</td>
</tr>
<tr>
<td>Plutonium-240 (Pu-240)</td>
<td>µCi/mL</td>
<td>1.4E-07</td>
</tr>
<tr>
<td>Americium-241 (Am-241)</td>
<td>µCi/mL</td>
<td>1.7E-07</td>
</tr>
</tbody>
</table>

DCS: Derived Concentration Standard. DCSs are established in DOE-STD-1196-2011 and are defined as the concentration of a radionuclide that, under conditions of continuous exposure for one year by one exposure mode, would result in an effective dose equivalent of 100 mrem (1mSv).

Because there are no DCSs for gross alpha and gross beta concentrations, the DCSs for the most restrictive alpha and beta emitters in water at the WVDP, uranium-232 and strontium-90 (9.8E-08 and 1.1E-06 uCi/mL, respectively) are used as a conservative basis for comparison at locations for which there are no radionuclide-specific data, in which case a more appropriate DCS may be applied.
APPENDIX B-2

Process Effluent Data

TABLE B-2A

Comparison of 2014 Lagoon 3 (WNSP001) Liquid Effluent Radioactivity Concentrations With U.S. DOE-Derived Concentration Standards (DCSs)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Discharge Activity</th>
<th>Average Concentration</th>
<th>DCS</th>
<th>Ratio of Average Concentration to DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Ci)</td>
<td>(Becquerels)</td>
<td>(µCi/mL)</td>
<td>(µCi/mL)</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>5.43±0.55E-04</td>
<td>2.01±0.20E+07</td>
<td>2.49±0.25E-08</td>
<td>NA</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>1.24±0.01E-02</td>
<td>4.57±0.04E+08</td>
<td>5.68±0.05E-07</td>
<td>NA</td>
</tr>
<tr>
<td>H-3</td>
<td>1.53±0.15E-02</td>
<td>5.65±0.56E+08</td>
<td>7.01±0.69E-07</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>C-14</td>
<td>0.93±2.95E-04</td>
<td>0.34±1.09E+07</td>
<td>0.43±1.36E-08</td>
<td>6.2E-05</td>
</tr>
<tr>
<td>K-40</td>
<td>0.85±3.64E-04</td>
<td>0.32±1.35E+07</td>
<td>0.39±1.67E-08</td>
<td>NA</td>
</tr>
<tr>
<td>Co-60</td>
<td>0.62±2.98E-05</td>
<td>0.23±1.10E+06</td>
<td>0.28±1.37E-09</td>
<td>7.2E-06</td>
</tr>
<tr>
<td>Sr-90</td>
<td>4.86±0.06E-03</td>
<td>1.80±0.02E+08</td>
<td>2.23±0.03E-07</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>Tc-99</td>
<td>3.05±0.28E-04</td>
<td>1.13±0.10E+07</td>
<td>1.40±0.13E-08</td>
<td>4.4E-05</td>
</tr>
<tr>
<td>I-129</td>
<td>4.02±1.81E-05</td>
<td>1.49±0.67E+06</td>
<td>1.85±0.83E-09</td>
<td>3.3E-07</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.74±0.10E-03</td>
<td>6.45±0.38E+07</td>
<td>8.00±0.47E-08</td>
<td>3.0E-06</td>
</tr>
<tr>
<td>U-232</td>
<td>1.44±0.06E-04</td>
<td>5.33±0.24E+06</td>
<td>6.62±0.30E-09</td>
<td>9.8E-08</td>
</tr>
<tr>
<td>U-233/234</td>
<td>1.09±0.06E-04</td>
<td>4.02±0.22E+06</td>
<td>5.00±0.27E-09</td>
<td>6.6E-07</td>
</tr>
<tr>
<td>U-235/236</td>
<td>5.14±1.30E-06</td>
<td>1.90±0.48E+05</td>
<td>2.36±0.60E-10</td>
<td>7.2E-07</td>
</tr>
<tr>
<td>U-238</td>
<td>8.75±0.54E-05</td>
<td>3.24±0.20E+06</td>
<td>4.02±0.25E-09</td>
<td>7.5E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>3.34±1.11E-06</td>
<td>1.23±0.41E+05</td>
<td>1.53±0.51E-10</td>
<td>1.5E-07</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>3.51±1.18E-06</td>
<td>1.30±0.43E+05</td>
<td>1.61±0.54E-10</td>
<td>1.4E-07</td>
</tr>
<tr>
<td>Am-241</td>
<td>5.44±1.28E-06</td>
<td>2.01±0.47E+05</td>
<td>2.50±0.59E-10</td>
<td>1.7E-07</td>
</tr>
</tbody>
</table>

Sum of Ratios 0.32

NA - Not applicable.

Half-lives are listed in Table UI-4.

Total volume released: 2.18E+10 milliliters (mL) (5.75E+06 gal).

1 curie (Ci) = 3.7E+10 becquerels (Bq); 18q = 2.7E-11 Ci; 1 microcurie (µCi) =1E-06 Ci.

DCSs are used as reference values for the application of best available technology per DOE Order 458.1.

DCSs do not exist for indicator parameters gross alpha and gross beta.

The DCS is not applied to potassium-40 (K-40) activity because of its natural origin.

Total uranium (g) = 2.50±0.03E+02; Average uranium (µg/mL) = 1.15±0.02E-02.

The DCS for U-233 is used for this comparison.
Table B-2B
2014 SPDES Results for Outfall 001 (WNSP001): Water Quality

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Ammonia (as NH₃) (mg/L)</th>
<th>BOD₅ day (mg/L)</th>
<th>Discharge Rate (MGD)</th>
<th>Chlorine, Total Residual (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.1 mg/L daily maximum</td>
<td>10.0 mg/L daily maximum</td>
<td>Monitor</td>
<td>0.1 mg/L daily maximum</td>
</tr>
<tr>
<td>Month</td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
<td>Max</td>
</tr>
<tr>
<td>January</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>February</td>
<td>0.23</td>
<td>0.27</td>
<td><2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>March</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>April</td>
<td>0.12</td>
<td>0.18</td>
<td><2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>May</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>June</td>
<td><0.015</td>
<td>0.020</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>July</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>August</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>September</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>October</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>November</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>December</td>
<td>0.032</td>
<td>0.034</td>
<td>4.2</td>
<td>4.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Dissolved Oxygen (mg/L)</th>
<th>Nitrogen, total Kjeldahl (as N) (mg/L)</th>
<th>Nitrate (as N) (mg/L)</th>
<th>Nitrite (as N) (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0 mg/L minimum</td>
<td>Monitor</td>
<td>Monitor</td>
<td>0.1 mg/L daily maximum</td>
</tr>
<tr>
<td>Month</td>
<td>Min</td>
<td>Max</td>
<td>Avg</td>
<td>Max</td>
</tr>
<tr>
<td>January</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>February</td>
<td>11</td>
<td>11</td>
<td>0.75</td>
<td>0.81</td>
</tr>
<tr>
<td>March</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>April</td>
<td>13</td>
<td>13</td>
<td>0.52</td>
<td>0.61</td>
</tr>
<tr>
<td>May</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>June</td>
<td>8.7</td>
<td>10.3</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>July</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>August</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>September</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>October</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>November</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>December</td>
<td>13</td>
<td>14</td>
<td>1.08</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Note: No results exceeded the permit limits.

MGD - Million gallons per day.

* There was no discharge from outfall 001 during this month in 2014.
TABLE B-2B (continued)

2014 SPDES Results for Outfall 001 (WNSP001); Water Quality

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Solids, Total Suspended (mg/L)</th>
<th>Sulfate (as S) (mg/L)</th>
<th>Sulfide, (as S) Dissolved (mg/L)</th>
<th>Surfactant (as LAS) (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45 mg/L daily maximum</td>
<td>Monitor</td>
<td>0.4 mg/L daily maximum</td>
<td>0.04 mg/L</td>
</tr>
<tr>
<td>Month</td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
<td>Max</td>
</tr>
<tr>
<td>January</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>February</td>
<td><4.0</td>
<td><4.0</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>March</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>April</td>
<td>7.2</td>
<td>9.2</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>May</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>June</td>
<td><4.4</td>
<td>4.8</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>July</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>August</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>September</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>October</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>November</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>December</td>
<td><4.0</td>
<td><4.0</td>
<td>129</td>
<td>129</td>
</tr>
</tbody>
</table>

Note: No results exceeded the permit limits.

LAS - linear alkylate sulfonate.

* There was no discharge from outfall 001 during this month in 2014.
Table B-2B (concluded)

2014 SPDES Results for Outfall 001 (WNSP001): Water Quality

<table>
<thead>
<tr>
<th>Month</th>
<th>Permit Limit</th>
<th>Ultimate Oxygen Demand (UOD) (mg/L)</th>
<th>22.0 mg/L daily maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>January a</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>February</td>
<td>< 6.58</td>
<td>< 6.70</td>
<td></td>
</tr>
<tr>
<td>March a</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>< 6.70</td>
<td>7.62</td>
<td></td>
</tr>
<tr>
<td>May a</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>7.52</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>July a</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>August a</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>September a</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>October a</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>November a</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>11.2</td>
<td>11.7</td>
<td></td>
</tr>
</tbody>
</table>

Note: No results exceeded the permit limits.

* a There was no discharge from outfall 001 during this month in 2014.
TABLE B-2C
2014 SPDES Results for Outfall 001 (WNSP001): Metals

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Aluminum, Total (mg/L)</th>
<th>Arsenic, Total Recoverable (mg/L)</th>
<th>Cobalt, Total Recoverable (mg/L)</th>
<th>Iron, Total (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.0 mg/L daily maximum</td>
<td>0.15 mg/L daily maximum</td>
<td>0.005 mg/L daily maximum</td>
<td>Monitor</td>
</tr>
<tr>
<td>Month</td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
<td>Max</td>
</tr>
<tr>
<td>January</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>February</td>
<td>0.26</td>
<td>0.26</td>
<td>0.0013</td>
<td>0.0013</td>
</tr>
<tr>
<td>March</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>April</td>
<td>0.26</td>
<td>0.26</td>
<td>0.0012</td>
<td>0.0012</td>
</tr>
<tr>
<td>May</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>June</td>
<td>0.12</td>
<td>0.12</td>
<td>0.0013</td>
<td>0.0013</td>
</tr>
<tr>
<td>July</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>August</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>September</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>October</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>November</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>December</td>
<td>0.20</td>
<td>0.20</td>
<td>0.0014</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Mercury, Total (ng/L)</th>
<th>Selenium, Total Recoverable (mg/L)</th>
<th>Vanadium, Total Recoverable (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 ng/L maximum</td>
<td>0.004 mg/L daily maximum</td>
<td>0.014 mg/L daily maximum</td>
</tr>
<tr>
<td>Month</td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
</tr>
<tr>
<td>January</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>February</td>
<td>14</td>
<td>14</td>
<td><0.0004</td>
</tr>
<tr>
<td>March</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>April</td>
<td>25</td>
<td>25</td>
<td>0.0005</td>
</tr>
<tr>
<td>May</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>June</td>
<td>6.1</td>
<td>7.1</td>
<td><0.0005</td>
</tr>
<tr>
<td>July</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>August</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>September</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>October</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>November</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>December</td>
<td>2.4</td>
<td>2.4</td>
<td><0.0004</td>
</tr>
</tbody>
</table>

Note: No results exceeded the permit limits.

* There was no discharge from outfall 001 during this month in 2014.
TABLE B-2D
2014 SPDES Results for Outfall 007 (WNSP007): Water Quality and Iron

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Ammonia (as NH$_3$) (mg/L)</th>
<th>BOD$_5$ (mg/L)</th>
<th>Chlorine, Total Residual (mg/L)</th>
<th>Discharge Rate (MGD)</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.1 mg/L daily maximum</td>
<td>10.0 mg/L daily maximum</td>
<td>0.1 mg/L daily maximum</td>
<td>Monitor</td>
<td>3.0 mg/L daily minimum</td>
</tr>
<tr>
<td>Month</td>
<td>Avg Max</td>
<td>Avg Max</td>
<td>Avg Max</td>
<td>Avg Max</td>
<td>Avg Max</td>
</tr>
<tr>
<td>January</td>
<td><0.009 <0.009</td>
<td>2.8 3.4</td>
<td>0.02 0.02</td>
<td>0.017 0.029</td>
<td>13 13</td>
</tr>
<tr>
<td>February</td>
<td><0.028 0.046</td>
<td><2.0 <2.0</td>
<td>0.02 0.02</td>
<td>0.015 0.028</td>
<td>10 13</td>
</tr>
<tr>
<td>March</td>
<td><0.009 <0.009</td>
<td><2.0 <2.0</td>
<td>0.02 0.02</td>
<td>0.015 0.023</td>
<td>12 14</td>
</tr>
<tr>
<td>April</td>
<td><0.009 <0.009</td>
<td><2.0 <2.0</td>
<td>0.02 0.02</td>
<td>0.020 0.026</td>
<td>10 11</td>
</tr>
<tr>
<td>May</td>
<td><0.009 <0.009</td>
<td><2.0 <2.0</td>
<td>0.02 0.02</td>
<td>0.014 0.016</td>
<td>8.0 8.5</td>
</tr>
<tr>
<td>June</td>
<td><0.009 <0.009</td>
<td><2.0 <2.0</td>
<td>0.02 0.02</td>
<td>0.016 0.018</td>
<td>7.4 9.1</td>
</tr>
<tr>
<td>July</td>
<td><0.021 0.032</td>
<td><2.0 <2.0</td>
<td>0.02 0.02</td>
<td>0.019 0.025</td>
<td>7.1 7.9</td>
</tr>
<tr>
<td>August</td>
<td><0.017 0.024</td>
<td><2.0 <2.0</td>
<td>0.02 0.02</td>
<td>0.014 0.032</td>
<td>7.8 7.9</td>
</tr>
<tr>
<td>September</td>
<td><0.018 0.027</td>
<td><2.0 <2.0</td>
<td>0.02 0.02</td>
<td>0.014 0.021</td>
<td>7.6 9.2</td>
</tr>
<tr>
<td>October</td>
<td><0.009 <0.009</td>
<td><2.0 <2.0</td>
<td>0.01 0.01</td>
<td>0.020 0.026</td>
<td>9.1 9.3</td>
</tr>
<tr>
<td>Novembera</td>
<td>NM NM NM NM</td>
<td>NM NM NM NM</td>
<td>NM NM NM</td>
<td>NM NM NM</td>
<td></td>
</tr>
<tr>
<td>Decembera</td>
<td>NM NM NM NM</td>
<td>NM NM NM NM</td>
<td>NM NM NM</td>
<td>NM NM NM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Iron, Total (mg/L)</th>
<th>Mercury, Total (as Hg) (ng/L)</th>
<th>Nitrogen, Total Kjeldahl (as N) (mg/L)</th>
<th>Nitrite (as N) (mg/L)</th>
<th>Oil & Grease (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monitor</td>
<td>50 ng/L daily maximum</td>
<td>Monitor</td>
<td>0.1 mg/L daily maximum</td>
<td>15.0 mg/L daily maximum</td>
</tr>
<tr>
<td>Month</td>
<td>Avg Max</td>
<td>Avg Max</td>
<td>Avg Max</td>
<td>Avg Max</td>
<td>Avg Max</td>
</tr>
<tr>
<td>January</td>
<td><0.019 <0.019</td>
<td>15 15</td>
<td>0.18 0.18</td>
<td><0.02 <0.02</td>
<td><2.6 3.7</td>
</tr>
<tr>
<td>February</td>
<td><0.020 0.021</td>
<td>0.75 0.75</td>
<td>0.20 0.20</td>
<td><0.02 <0.02</td>
<td><1.4 <1.4</td>
</tr>
<tr>
<td>March</td>
<td><0.024 0.028</td>
<td>13 13</td>
<td>0.56 0.56</td>
<td><0.02 <0.02</td>
<td><1.4 <1.4</td>
</tr>
<tr>
<td>April</td>
<td>0.0360 0.0485</td>
<td>5.4 5.4</td>
<td><0.15 <0.15</td>
<td><0.02 <0.02</td>
<td><1.4 <1.4</td>
</tr>
<tr>
<td>May</td>
<td>0.037 0.046</td>
<td>6.2 6.2</td>
<td><0.15 <0.15</td>
<td><0.02 <0.02</td>
<td><1.4 <1.4</td>
</tr>
<tr>
<td>June</td>
<td>0.0345 0.0367</td>
<td>11 11</td>
<td>0.21 0.21</td>
<td><0.02 <0.02</td>
<td><1.4 <1.4</td>
</tr>
<tr>
<td>July</td>
<td><0.0240 0.0286</td>
<td>13 13</td>
<td><0.15 <0.15</td>
<td><0.02 <0.02</td>
<td><1.4 <1.4</td>
</tr>
<tr>
<td>August</td>
<td><0.0203 0.0213</td>
<td>7.3 7.3</td>
<td><0.15 <0.15</td>
<td>0.03 0.03</td>
<td><1.4 <1.4</td>
</tr>
<tr>
<td>September</td>
<td>0.022 0.025</td>
<td>5.6 5.6</td>
<td>0.23 0.23</td>
<td><0.02 <0.02</td>
<td><1.5 <1.6</td>
</tr>
<tr>
<td>October</td>
<td>0.030 0.039</td>
<td>5.5 5.5</td>
<td>0.43 0.43</td>
<td><0.02 <0.02</td>
<td><1.5 <1.5</td>
</tr>
<tr>
<td>Novembera</td>
<td>NM NM NM NM</td>
<td>NM NM NM</td>
<td>NM NM</td>
<td>NM NM</td>
<td>NM NM</td>
</tr>
<tr>
<td>Decembera</td>
<td>NM NM NM NM</td>
<td>NM NM NM</td>
<td>NM NM</td>
<td>NM NM</td>
<td>NM NM</td>
</tr>
</tbody>
</table>

Note: No results exceeded the permit limits.

MGD - Million gallons per day.
NM - Not measured.
a SPDES discharge from 007 was discontinued in November 2014.
2014 SPDES Results for Outfall 007 (WNSP007): Water Quality and Iron

TABLE B-2D (concluded)

<table>
<thead>
<tr>
<th>Month</th>
<th>pH (standard units)</th>
<th>Solids Settleable (mL/L)</th>
<th>Solids Total Dissolved (mg/L)</th>
<th>Solids Total Suspended (mg/L)</th>
<th>Ultimate Oxygen Demand (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Avg</td>
<td>Max</td>
<td>Avg</td>
</tr>
<tr>
<td>January</td>
<td>6.8</td>
<td>7.3</td>
<td><0.1</td>
<td><0.1</td>
<td>115</td>
</tr>
<tr>
<td>February</td>
<td>6.8</td>
<td>7.5</td>
<td><0.1</td>
<td><0.1</td>
<td>134</td>
</tr>
<tr>
<td>March</td>
<td>7.0</td>
<td>7.3</td>
<td><0.1</td>
<td><0.1</td>
<td>161</td>
</tr>
<tr>
<td>April</td>
<td>6.9</td>
<td>7.2</td>
<td><0.1</td>
<td><0.1</td>
<td>110</td>
</tr>
<tr>
<td>May</td>
<td>7.0</td>
<td>7.6</td>
<td><0.1</td>
<td><0.1</td>
<td>111</td>
</tr>
<tr>
<td>June</td>
<td>7.5</td>
<td>7.5</td>
<td><0.1</td>
<td><0.1</td>
<td>172</td>
</tr>
<tr>
<td>July</td>
<td>7.4</td>
<td>7.5</td>
<td><0.1</td>
<td><0.1</td>
<td>113</td>
</tr>
<tr>
<td>August</td>
<td>7.2</td>
<td>7.6</td>
<td><0.1</td>
<td><0.1</td>
<td>120</td>
</tr>
<tr>
<td>September</td>
<td>7.7</td>
<td>8.1</td>
<td><0.1</td>
<td><0.1</td>
<td>113</td>
</tr>
<tr>
<td>October</td>
<td>7.4</td>
<td>7.7</td>
<td><0.1</td>
<td><0.1</td>
<td>143</td>
</tr>
<tr>
<td>November</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>December</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
</tbody>
</table>

Note: No results exceeded the permit limits.

NM - Not measured.

SPDES discharge from 007 was discontinued in November 2014.
TABLE B-2E
2014 SPDES Results for Sums of Outfalls 001, 007, and 116: Water Quality

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Iron Total<sup>a</sup></th>
<th>Net Effluent Limitation</th>
<th>Total Dissolved Solids<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0 mg/L daily maximum</td>
<td></td>
<td>500 mg/L daily maximum</td>
</tr>
<tr>
<td>Month</td>
<td>Avg</td>
<td>Max</td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>0</td>
<td>0</td>
<td>Visited</td>
</tr>
<tr>
<td>February</td>
<td>0</td>
<td>0</td>
<td>Visited</td>
</tr>
<tr>
<td>March</td>
<td>0</td>
<td>0</td>
<td>Visited</td>
</tr>
<tr>
<td>April</td>
<td>0</td>
<td>0</td>
<td>Visited</td>
</tr>
<tr>
<td>May</td>
<td>0</td>
<td>0</td>
<td>Visited</td>
</tr>
<tr>
<td>June</td>
<td>0.27</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>0</td>
<td>0</td>
<td>Visited</td>
</tr>
<tr>
<td>August</td>
<td>0</td>
<td>0</td>
<td>Visited</td>
</tr>
<tr>
<td>September</td>
<td>0</td>
<td>0</td>
<td>Visited</td>
</tr>
<tr>
<td>October</td>
<td>0.03</td>
<td>0.03</td>
<td>Visited</td>
</tr>
<tr>
<td>November<sup>b,c</sup></td>
<td>--</td>
<td>--</td>
<td>Visited</td>
</tr>
<tr>
<td>December<sup>b</sup></td>
<td>0.93</td>
<td>0.93</td>
<td></td>
</tr>
</tbody>
</table>

^a Sum of Outfalls 001 and 007.

^b SPDES discharge from 007 was discontinued in November 2014.

^c There were no discharges from either outfall 001 or 007 during November 2014. Therefore, a calculated total iron is not required.

<table>
<thead>
<tr>
<th>Permit Limit</th>
<th>Total Dissolved Solids<sup>b</sup> (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500 mg/L daily maximum</td>
</tr>
<tr>
<td>Month</td>
<td>Avg</td>
</tr>
<tr>
<td>January<sup>c</sup></td>
<td>--</td>
</tr>
<tr>
<td>February<sup>c</sup></td>
<td>388</td>
</tr>
<tr>
<td>March<sup>c</sup></td>
<td>--</td>
</tr>
<tr>
<td>April</td>
<td>214</td>
</tr>
<tr>
<td>May<sup>c</sup></td>
<td>--</td>
</tr>
<tr>
<td>June</td>
<td>321</td>
</tr>
<tr>
<td>July<sup>c</sup></td>
<td>--</td>
</tr>
<tr>
<td>August<sup>c</sup></td>
<td>--</td>
</tr>
<tr>
<td>September<sup>c</sup></td>
<td>--</td>
</tr>
<tr>
<td>October<sup>c</sup></td>
<td>--</td>
</tr>
<tr>
<td>November<sup>c</sup></td>
<td>--</td>
</tr>
<tr>
<td>December</td>
<td>213</td>
</tr>
</tbody>
</table>

^b Pseudo-monitoring point 116 only.

^c There was no discharge from outfall 001 during this month in 2014, therefore, a calculated TDS at 116 is not required.
TABLE B-2F

2014 Annual and Semiannual SPDES Results for Outfall 001:
Metals, Water Quality and Organic Compounds

<table>
<thead>
<tr>
<th>Permit Limit Parameters</th>
<th>Permit Limit</th>
<th>Monitoring Frequency</th>
<th>Sample Date</th>
<th>Maximum Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Butanone</td>
<td>0.5 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.002</td>
</tr>
<tr>
<td>3,3-Dichlorobenzidine</td>
<td>0.01 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.0008</td>
</tr>
<tr>
<td>Alpha-BHC</td>
<td>0.01 ug/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.007</td>
</tr>
<tr>
<td>Cadmium, Total Recoverable</td>
<td>0.002 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.00007</td>
</tr>
<tr>
<td>Chromium VI, Total Recoverable</td>
<td>0.011 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.0050</td>
</tr>
<tr>
<td>Chromium, Total Recoverable</td>
<td>0.11 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>0.00077</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>0.014mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>0.0040</td>
</tr>
<tr>
<td>Cyanide, Amenable to chlorination</td>
<td>0.005 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td><0.005</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>0.01 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.0003</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>0.01 ug/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td><0.007</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>0.2 ug/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.01</td>
</tr>
<tr>
<td>Lead, Total Recoverable</td>
<td>0.006 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>0.0005</td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>2.0 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>0.014</td>
</tr>
<tr>
<td>Nickel, Total</td>
<td>0.079 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>0.0017</td>
</tr>
<tr>
<td>Tributyl phosphate</td>
<td>0.1 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.0008</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>0.01 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.0005</td>
</tr>
<tr>
<td>Xylene</td>
<td>0.05 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.001</td>
</tr>
<tr>
<td>Zinc, Total Recoverable</td>
<td>0.13 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>0.0062</td>
</tr>
</tbody>
</table>
TABLE B-2G
2014 SPDES Action Level Requirement Monitoring Results for Outfalls 001 and 007
Metals and Water Quality

<table>
<thead>
<tr>
<th>Outfall</th>
<th>Action Level Parameters</th>
<th>Action Level</th>
<th>Monitoring Frequency</th>
<th>Sampling Date</th>
<th>Maximum Measured (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Antimony, Total</td>
<td>1.0 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.0068</td>
</tr>
<tr>
<td></td>
<td>Barium, Total</td>
<td>0.5 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Boron, Total</td>
<td>2.0 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>December 2014</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>Bromide, Total</td>
<td>5.0 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>< 0.073</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>December 2014</td>
<td>< 0.073</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>0.3 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td><0.0005</td>
</tr>
<tr>
<td></td>
<td>Titanium, Total</td>
<td>0.65 mg/L daily maximum</td>
<td>Semiannual</td>
<td>February 2014</td>
<td>0.0059</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>December 2014</td>
<td>< 0.0011</td>
</tr>
<tr>
<td>007</td>
<td>Chloroform</td>
<td>0.20 mg/L daily maximum</td>
<td>Annual</td>
<td>February 2014</td>
<td>0.0013</td>
</tr>
</tbody>
</table>

TABLE B-2H
2014 SPDES Results for Outfall 01B (WNSP01B): Water Quality

Internal process monitoring point did not operate during 2014.
TABLE B-2I
2014 Paraquat Dichloride Data in areas of Herbicide Application

<table>
<thead>
<tr>
<th>Stormwater Outfalls</th>
<th>Date</th>
<th>Units</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 - CDDL</td>
<td>S04</td>
<td>06/25/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S04</td>
<td>11/06/14</td>
<td>mg/L</td>
</tr>
<tr>
<td>Group 2 - North Plateau</td>
<td>S06</td>
<td>06/25/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S06</td>
<td>11/06/14</td>
<td>mg/L</td>
</tr>
<tr>
<td>Group 3 - Lagoons</td>
<td>S09</td>
<td>06/25/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S09</td>
<td>07/07/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>06/25/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S12</td>
<td>11/06/14</td>
<td>mg/L</td>
</tr>
<tr>
<td>Group 4 - Erdman Brook West</td>
<td>S34</td>
<td>06/25/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S34</td>
<td>11/06/14</td>
<td>mg/L</td>
</tr>
<tr>
<td>Group 5 - Erdman Brook East</td>
<td>S14</td>
<td>06/25/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S14</td>
<td>11/06/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S17</td>
<td>11/06/14</td>
<td>mg/L</td>
</tr>
<tr>
<td>Group 6 - Railroad Spur</td>
<td>S28</td>
<td>06/25/14</td>
<td>mg/L</td>
</tr>
<tr>
<td>Group 7 - NDA</td>
<td>S20</td>
<td>06/25/14</td>
<td>mg/L</td>
</tr>
<tr>
<td></td>
<td>S20</td>
<td>07/07/14</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process Effluent Outfalls</th>
<th>Date</th>
<th>Units</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNSP001</td>
<td>06/25/14</td>
<td>mg/L</td>
<td><0.002</td>
</tr>
<tr>
<td>WNSP007</td>
<td>06/25/14</td>
<td>mg/L</td>
<td><0.002</td>
</tr>
</tbody>
</table>

The site applied the herbicide Paraquat Dichloride at the WVDP between June 9 and June 14, and on October 16 and 30, 2014. In accordance with the SPDES permit, sampling is required from storm water outfalls and process effluent outfalls within 60 days of herbicide application from the drainage basins potentially affected by the herbicide.
TABLE B-2J

2014 Radioactivity Results for Sewage Treatment Outfall (WNSP007)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Discharge Activity</th>
<th>Average Concentration</th>
<th>DCS</th>
<th>Ratio of Concentration to DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Ci)</td>
<td>(Becquerels)</td>
<td>(μCi/mL)</td>
<td></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>10^9</td>
<td>$-2.57\pm1.33E-06$</td>
<td>$-9.50\pm4.91E+04$</td>
<td>$-4.48\pm2.31E-10$</td>
<td>NA e</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>10^9</td>
<td>$9.82\pm1.38E-06$</td>
<td>$3.63\pm0.51E+05$</td>
<td>$1.71\pm0.24E-09$</td>
<td>NA e</td>
</tr>
<tr>
<td>Tritium</td>
<td>10^9</td>
<td>$2.17\pm1.85E-04$</td>
<td>$8.02\pm6.85E+06$</td>
<td>$3.78\pm3.23E-08$</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>Sr-90</td>
<td>1</td>
<td>$7.40\pm4.84E-06$</td>
<td>$2.74\pm1.79E+05$</td>
<td>$1.29\pm0.84E-09$</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1</td>
<td>$-0.09\pm1.47E-05$</td>
<td>$-0.33\pm5.43E+05$</td>
<td>$-0.16\pm2.56E-09$</td>
<td>3.0E-06</td>
</tr>
<tr>
<td>Sum of Ratios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< 0.0020</td>
</tr>
</tbody>
</table>

N - Number of samples.
NA - Not applicable.

a Half-lives are listed in Table UI-4.
b Total volume released; 1.52E+06 gal, (5.74E+09 mL).
c 1 curie (Ci) = 3.7E+10 becquerels (Bq); 1 Bq = 2.7E-11 Ci.
d Monitoring of WNSP007 was discontinued in November 2014 as no waste streams present.

e DOE derived concentration standards (DCSs) do not exist for indicator parameters gross alpha and beta.
APPENDIX B-3
SPDES-Permitted Storm Water Outfall Discharge Data

TABLE B-3A
2014 Storm Water Discharge Monitoring Data for Outfall Group 1

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04/30/14</td>
<td>04/30/14</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD<sub>5</sub></td>
<td>BOD<sub>5</sub> mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>4.2</td>
<td>< 2.4</td>
</tr>
<tr>
<td>Oil & Grease<sup>a</sup></td>
<td>Oil & Grease mg/L</td>
<td>mg/L</td>
<td>1</td>
<td>< 1.4</td>
<td>NR</td>
</tr>
<tr>
<td>pH</td>
<td>pH SU</td>
<td>SU</td>
<td>1</td>
<td>7.9</td>
<td>NR</td>
</tr>
<tr>
<td>Phosphorous, Total</td>
<td>Phosphorous, Total mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.65</td>
<td>0.25</td>
</tr>
<tr>
<td>Solids, Total Dissolved</td>
<td>Solids, Total Dissolved mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>925</td>
<td>410</td>
</tr>
<tr>
<td>Solids, Total Suspended</td>
<td>Solids, Total Suspended mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>1390</td>
<td>556</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, Total</td>
<td>Aluminum, Total mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>Copper, Total Recoverable mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.079</td>
<td>0.039</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>Iron, Total mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>79</td>
<td>30</td>
</tr>
<tr>
<td>Lead, Total Recoverable</td>
<td>Lead, Total Recoverable mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.055</td>
<td>0.020</td>
</tr>
<tr>
<td>Zinc, Total Recoverable</td>
<td>Zinc, Total Recoverable mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.52</td>
<td>0.22</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia (as NH<sub>3</sub>)</td>
<td>Ammonia (as NH<sub>3</sub>) mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.073</td>
<td>0.058</td>
</tr>
<tr>
<td>Cadmium, Total Recoverable</td>
<td>Cadmium, Total Recoverable mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.00095</td>
<td>0.00036</td>
</tr>
<tr>
<td>Chromium, Hexavalent, Total Recoverable</td>
<td>Chromium, Hexavalent, Total Recoverable mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0050</td>
<td>< 0.025</td>
</tr>
<tr>
<td>Chromium, Total Recoverable</td>
<td>Chromium, Total Recoverable mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.034</td>
<td>0.016</td>
</tr>
<tr>
<td>Nitrogen, Nitrate (as N)</td>
<td>Nitrogen, Nitrate (as N) mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.26</td>
<td>0.23</td>
</tr>
<tr>
<td>Nitrogen, Nitrite (as N)</td>
<td>Nitrogen, Nitrite (as N) mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
<tr>
<td>Nitrogen, Total (as N)</td>
<td>Nitrogen, Total (as N) mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.72</td>
<td>< 0.38</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>Nitrogen, Total Kjeldahl mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.44</td>
<td>< 0.15</td>
</tr>
<tr>
<td>Selenium, Total Recoverable</td>
<td>Selenium, Total Recoverable mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.00044</td>
<td>< 0.00044</td>
</tr>
<tr>
<td>Vanadium, Total Recoverable</td>
<td>Vanadium, Total Recoverable mg/L</td>
<td>mg/L</td>
<td>2</td>
<td>0.036</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainfall</td>
<td>pH of Rainfall During Sampling Event</td>
<td>SU</td>
<td>1</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>Rainfall</td>
<td>Rainfall During Sampling Event inches</td>
<td>--</td>
<td>--</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td>Total Flow During Sampling Event gallons</td>
<td>--</td>
<td>--</td>
<td>410,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum Flow Rate During Sampling Event gpm</td>
<td>--</td>
<td>--</td>
<td>3,900</td>
<td></td>
</tr>
</tbody>
</table>

gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.
^a The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
TABLE B-3A (concluded)
2014 Storm Water Discharge Monitoring Data for Outfall Group 1

STORM WATER OUTFALL S04

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10/15/14</td>
<td>10/15/14</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>< 2.0</td>
<td>< 2.0</td>
</tr>
<tr>
<td>Oil & Grease</td>
<td>mg/L</td>
<td>1</td>
<td>2.0</td>
<td>NR</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.4</td>
<td>NR</td>
</tr>
<tr>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.0064</td>
<td>0.0082</td>
</tr>
<tr>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>240</td>
<td>287</td>
</tr>
<tr>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>6.4</td>
<td>8.0</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.68</td>
<td>0.66</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0030</td>
<td>0.0024</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.00056</td>
<td>0.00035</td>
</tr>
<tr>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.014</td>
<td>0.011</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.009</td>
<td>0.056</td>
</tr>
<tr>
<td>Cadmium, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.00018</td>
<td>0.00012</td>
</tr>
<tr>
<td>Chromium, Hexavalent, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0050</td>
<td>< 0.0050</td>
</tr>
<tr>
<td>Chromium, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0015</td>
<td>0.0012</td>
</tr>
<tr>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.02</td>
<td>0.022</td>
</tr>
<tr>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.021</td>
<td>< 0.020</td>
</tr>
<tr>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.19</td>
<td>< 0.19</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.15</td>
<td>< 0.15</td>
</tr>
<tr>
<td>Selenium, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.00044</td>
<td>< 0.00044</td>
</tr>
<tr>
<td>Vanadium, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.00018</td>
<td>< 0.00018</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>N</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>pH of Rainfall During Sampling Event</td>
<td>SU</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
</tr>
<tr>
<td>Flow</td>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
</tr>
</tbody>
</table>

- gpm - gallons per minute.
- N - Number of samples.
- NR - Not required by permit.
- The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
TABLE B-3B

2014 Storm Water Discharge Monitoring Data for Outfall Group 2

STORM WATER OUTFALL S06 / DUPLICATE

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>06/03/14</td>
<td>06/03/14</td>
</tr>
<tr>
<td>Group A</td>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>< 1.0 / < 1.0</td>
<td>< 1.0</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease¹</td>
<td>mg/L</td>
<td>1</td>
<td>6.7 / 4.8</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.2</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td><0.017/<0.017</td>
<td>< 0.017</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>824 / 831</td>
<td>883</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>2.8 / 4.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Group B</td>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td><0.068/<0.068</td>
<td>< 0.068</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.00072 / 0.00064</td>
<td>0.00062</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.24 / 0.23</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td><0.00050/<0.00050</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td><0.0033 / <0.0033</td>
<td>< 0.0033</td>
</tr>
<tr>
<td>Group C</td>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0043 / <0.0043</td>
<td>< 0.0043</td>
</tr>
</tbody>
</table>

Rain Event Summary

Rainfall	pH of Rainfall During Sampling Event	SU	1	6.6
	Rainfall During Sampling Event	inches	--	0.34
Flow	Total Flow During Sampling Event	gallons	--	8,900
	Maximum Flow Rate During Sampling Event	gpm	--	58

gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.
¹ The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
TABLE B-3B (concluded)

2014 Storm Water Discharge Monitoring Data for Outfall Group 2

STORM WATER OUTFALL S33

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab 10/15/14</th>
<th>Flow-weighted Composite 10/15/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A Parameters</td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>2.2</td>
<td>< 2.0</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease⁴</td>
<td>mg/L</td>
<td>1</td>
<td>2.6</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.1</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>767</td>
<td>434</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0014</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>3.2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.00048</td>
<td>0.00034</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.023</td>
<td>0.0094</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.013</td>
<td>< 0.013</td>
</tr>
</tbody>
</table>

Rain Event Summary

Rainfall	pH of Rainfall During Sampling Event	SU	1	8.3
	Rainfall During Sampling Event	inches	--	0.25
Flow	Total Flow During Sampling Event	gallons	--	7,400
	Maximum Flow Rate During Sampling Event	gpm	--	95

gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.
⁴ The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>04/30/14</td>
<td>04/30/14</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>3.4</td>
<td>< 2.4</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td>Oil & Greaseᵃ</td>
<td>mg/L</td>
<td>1</td>
<td>< 1.4</td>
<td>NR</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.5</td>
<td>NR</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.24</td>
<td>0.10</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>499</td>
<td>558</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>173</td>
<td>182</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.036</td>
<td>0.019</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.017</td>
<td>0.0083</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.17</td>
<td>0.087</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Alpha BHC</td>
<td>mg/L</td>
<td>2</td>
<td><0.0000062</td>
<td>< 0.0000064</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>2</td>
<td>0.029</td>
<td>0.013</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Mercury, Totalᵇ (1631E)</td>
<td>ng/L</td>
<td>1</td>
<td>36.5</td>
<td>NR</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.26</td>
<td>0.17</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 1.2</td>
<td>< 1.0</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>0.88</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th></th>
<th>Units</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>SU</td>
<td>1</td>
<td>7.5</td>
</tr>
<tr>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.28</td>
</tr>
<tr>
<td>Flow</td>
<td>gallons</td>
<td>--</td>
<td>28,000</td>
</tr>
<tr>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>220</td>
</tr>
</tbody>
</table>

Note: The first flush grab samples were sampled and analyzed in duplicate.
gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.
ᵃ The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
ᵇ The SPDES permit requires that Group 3 outfalls be analyzed for mercury as part of the Mercury Minimization Program.
TABLE B-3C (concluded)

2014 Storm Water Discharge Monitoring Data for Outfall Group 3

STORM WATER OUTFALL S09

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>07/07/14</td>
<td>07/07/14</td>
</tr>
<tr>
<td>A Parameters</td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>8.5</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease<sup>a</sup></td>
<td>mg/L</td>
<td>1</td>
<td>< 1.4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>8.2</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>190</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>253</td>
<td>335</td>
</tr>
<tr>
<td>B Parameters</td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>8.5</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0091</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>C Parameters</td>
<td>Alpha BHC</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0000063</td>
<td>< 0.0000067</td>
</tr>
<tr>
<td></td>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>2</td>
<td>0.22</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Mercury, Total<sup>b</sup> (1631E)</td>
<td>ng/L</td>
<td>1</td>
<td>20</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.86</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 2.4</td>
<td>< 1.2</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>1.5</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall of Rainfall During Sampling Event</td>
<td>SU</td>
<td>1</td>
<td>6.4</td>
</tr>
<tr>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.32</td>
</tr>
<tr>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>100,000</td>
</tr>
<tr>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>2,700</td>
</tr>
</tbody>
</table>

* gpm - gallons per minute.
* N - Number of samples.
* NR - Not required by permit.
* ^a The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
* ^b The SPDES permit requires that Group 3 outfalls be analyzed for mercury as part of the Mercury Minimization Program.
TABLE B-3D

2014 Storm Water Discharge Monitoring Data for Outfall Group 4

STORM WATER OUTFALL S34

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td></td>
<td></td>
<td></td>
<td>05/20/14</td>
<td>05/20/14</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>2.1</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease⁹</td>
<td>mg/L</td>
<td>1</td>
<td>< 1.3</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.065</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>390</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>144</td>
<td>609</td>
</tr>
<tr>
<td>Group B</td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>5.7</td>
<td>20</td>
</tr>
<tr>
<td>Parameters</td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0066</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>6.4</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0035</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.062</td>
<td>0.19</td>
</tr>
<tr>
<td>Group C</td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>0.025</td>
<td>0.014</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>SU</td>
<td>1</td>
<td>8.0</td>
</tr>
<tr>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.19</td>
</tr>
<tr>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>4,200</td>
</tr>
<tr>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>120</td>
</tr>
</tbody>
</table>

gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.
⁹ The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
TABLE B-3D (concluded)
2014 Storm Water Discharge Monitoring Data for Outfall Group 4

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab 10/13/14</th>
<th>Flow-weighted Composite 10/13/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOD$_5$</td>
<td>mg/L</td>
<td>3</td>
<td>2.0 / 2.5</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Oil & Greasea</td>
<td>mg/L</td>
<td>2</td>
<td><1.4 / <1.3</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.5</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>3</td>
<td>0.057 / 0.099</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>3</td>
<td>381 / 372</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>3</td>
<td>139 / 138</td>
<td>84</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>3</td>
<td>4.7 / 4.6</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>3</td>
<td>0.013 / 0.013</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>3</td>
<td>6.7 / 6.7</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>3</td>
<td>0.0044 / 0.0043</td>
<td>0.0037</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>3</td>
<td>0.15 / 0.15</td>
<td>0.085</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>3</td>
<td>0.024 / 0.022</td>
<td>0.062</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall pH of Rainfall</td>
<td>SU</td>
<td>6.9</td>
</tr>
<tr>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>0.19</td>
</tr>
<tr>
<td>Flow Total Flow During Sampling Event</td>
<td>gallons</td>
<td>4,700</td>
</tr>
<tr>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>120</td>
</tr>
</tbody>
</table>

* gpm - gallons per minute.
* N - Number of samples.
* NR - Not required by permit.

a The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
TABLE B-3E

2014 Storm Water Discharge Monitoring Data for Outfall Group 5

STORM WATER OUTFALL S28

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>4.7</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>Oil & Greaseᵃ</td>
<td>mg/L</td>
<td>1</td>
<td>< 1.3</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.8</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.096</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>570</td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>182</td>
<td>74</td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>4.3</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0097</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>6.1</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0071</td>
<td>0.0064</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.042</td>
<td>0.039</td>
</tr>
<tr>
<td>Group C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>2</td>
<td>0.062</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.54</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.11</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>1.1</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>Settleable Solids</td>
<td>ml/L</td>
<td>2</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Sulfide</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.052</td>
<td>< 0.052</td>
</tr>
<tr>
<td></td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.013</td>
<td>< 0.013</td>
</tr>
<tr>
<td></td>
<td>Vanadium, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0033</td>
<td>0.0040</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rain Event Summary</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>pH of Rainfall During Sampling Event</td>
<td>SU</td>
<td>1</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>14,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>115</td>
<td></td>
</tr>
</tbody>
</table>

gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.
ᵃ The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
TABLE B-3E (concluded)

2014 Storm Water Discharge Monitoring Data for Outfall Group 5

<table>
<thead>
<tr>
<th>STORM WATER OUTFALL S14</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Group</td>
<td>Analyte</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td></td>
</tr>
<tr>
<td>BOD₅</td>
<td>mg/L</td>
</tr>
<tr>
<td>Oil & Grease<sup>a</sup></td>
<td>mg/L</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
</tr>
<tr>
<td>Phosphorous, Total</td>
<td>mg/L</td>
</tr>
<tr>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
</tr>
<tr>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td></td>
</tr>
<tr>
<td>Aluminum, Total</td>
<td>mg/L</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>mg/L</td>
</tr>
<tr>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
</tr>
<tr>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td></td>
</tr>
<tr>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
</tr>
<tr>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
</tr>
<tr>
<td>Settleable Solids</td>
<td>ml/L</td>
</tr>
<tr>
<td>Sulfide</td>
<td>mg/L</td>
</tr>
<tr>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
</tr>
<tr>
<td>Vanadium, Total Recoverable</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Parameter</th>
<th>Units</th>
<th>N</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>pH of Rainfall During Sampling Event</td>
<td>SU</td>
<td>1</td>
<td>7.6</td>
</tr>
<tr>
<td>Rainfall</td>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.17</td>
</tr>
<tr>
<td>Flow</td>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>1.7</td>
</tr>
</tbody>
</table>

gpm - gallons per minute.

N - Number of samples.

NR - Not required by permit.

^a The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
TABLE B-3F
2014 Storm Water Discharge Monitoring Data for Outfall Group 6

STORM WATER OUTFALL S42

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A Parameters</td>
<td>BOD(_5)</td>
<td>mg/L</td>
<td>2</td>
<td>4.9</td>
<td>< 2.0</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease(^a)</td>
<td>mg/L</td>
<td>1</td>
<td>< 1.3</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>8.0</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.039</td>
<td>< 0.0050</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>1900</td>
<td>1900</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>54</td>
<td>6.8</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.53</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0090</td>
<td>0.0062</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>2.3</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0011</td>
<td>0.00020</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.040</td>
<td>0.011</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Ammonia (as NH(_3))</td>
<td>mg/L</td>
<td>2</td>
<td>0.036</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 2.3</td>
<td>< 0.81</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>2.0</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>Solids, Settleable</td>
<td>ml/L</td>
<td>2</td>
<td>0.4</td>
<td>< 0.1</td>
</tr>
<tr>
<td></td>
<td>Sulfide</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.052</td>
<td>< 0.052</td>
</tr>
<tr>
<td></td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.013</td>
<td>< 0.013</td>
</tr>
<tr>
<td></td>
<td>Vanadium, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.00073</td>
<td>< 0.00018</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Rainfall</th>
<th>pH of Rainfall During Sampling Event</th>
<th>SU</th>
<th>1</th>
<th>5.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>Flow</td>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>2,900</td>
</tr>
<tr>
<td></td>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>30</td>
</tr>
</tbody>
</table>

\(\text{gpm} - \text{gallons per minute.}
\N - \text{Number of samples.}
\NR - \text{Not required by permit.}
\^a\text{The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.}

NOTE: Storm water outfall S43 in outfall group 6 was also analyzed for total recoverable lead during this sampling event. The total recoverable lead result for S43 in June 2014 = 0.002 mg/L (Action Level = 0.006 mg/L).
TABLE B-3F (concluded)

2014 Storm Water Discharge Monitoring Data for Outfall Group 6

STORM WATER OUTFALL S36

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A Parameters</td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease</td>
<td>mg/L</td>
<td>2</td>
<td>< 1.4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.2</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0050</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>270</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>22</td>
<td>90</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>2.2</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0023</td>
<td>0.0067</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>2.5</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.00092</td>
<td>0.0038</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.016</td>
<td>0.040</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>2</td>
<td>0.019</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.52</td>
<td>< 0.68</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>0.29</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>Solids, Settleable</td>
<td>ml/L</td>
<td>2</td>
<td>< 0.1</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Sulfide</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.052</td>
<td>< 0.052</td>
</tr>
<tr>
<td></td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>0.026</td>
<td>< 0.013</td>
</tr>
<tr>
<td></td>
<td>Vanadium, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.00089</td>
<td>0.0036</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Rainfall</th>
<th>Units</th>
<th>N</th>
<th>11/06/14</th>
<th>11/06/14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall of Rainfall During Sampling Event</td>
<td>SU</td>
<td>1</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>3,400</td>
<td></td>
</tr>
<tr>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.
a The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.

NOTE: Storm water outfall S43 in outfall group 6 was also analyzed for total recoverable lead during this sampling event. The total recoverable lead result for S43 in November 2014 = 0.003 mg/L (Action Level = 0.006 mg/L).
TABLE B-3G

2014 Storm Water Discharge Monitoring Data for Outfall Group 7

STORM WATER OUTFALL S20

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>3.5</td>
<td>< 2.4</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease²</td>
<td>mg/L</td>
<td>1</td>
<td>< 1.4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.079</td>
<td>< 0.0050</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>112</td>
<td>6.0</td>
</tr>
<tr>
<td>Group B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>2.5</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0030</td>
<td>0.00081</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>3.1</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0021</td>
<td>0.00044</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.025</td>
<td>0.0068</td>
</tr>
<tr>
<td>Group C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>2</td>
<td>0.15</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.54</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 1.2</td>
<td>< 0.41</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>0.67</td>
<td>< 0.15</td>
</tr>
<tr>
<td></td>
<td>Sulfide</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.052</td>
<td>< 0.052</td>
</tr>
<tr>
<td></td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>0.017</td>
<td>< 0.013</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH of Rainfall During Sampling Event</td>
<td>SU</td>
<td>7.5</td>
</tr>
<tr>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>0.28</td>
</tr>
<tr>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>75,000</td>
</tr>
<tr>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>510</td>
</tr>
</tbody>
</table>

gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.
² The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
Table B-3G (concluded)

2014 Storm Water Discharge Monitoring Data for Outfall Group 7

STORM WATER OUTFALL S20

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD<sub>5</sub></td>
<td>mg/L</td>
<td>2</td>
<td>6.8</td>
<td>3.6</td>
</tr>
<tr>
<td>Oil & Grease<sup>a</sup></td>
<td>mg/L</td>
<td>1</td>
<td>< 1.4</td>
<td>NR</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.4</td>
<td>NR</td>
</tr>
<tr>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.11</td>
<td>0.017</td>
</tr>
<tr>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>116</td>
<td>34</td>
</tr>
<tr>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>121</td>
<td>16</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>3.6</td>
<td>0.75</td>
</tr>
<tr>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0050</td>
<td>0.0012</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>4.9</td>
<td>0.86</td>
</tr>
<tr>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.0029</td>
<td>0.00060</td>
</tr>
<tr>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.030</td>
<td>0.0067</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia (as NH<sub>3</sub>)</td>
<td>mg/L</td>
<td>2</td>
<td>0.41</td>
<td>0.24</td>
</tr>
<tr>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>1.4</td>
<td>0.56</td>
</tr>
<tr>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
<tr>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 3.0</td>
<td>< 0.91</td>
</tr>
<tr>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>1.6</td>
<td>0.33</td>
</tr>
<tr>
<td>Sulfide</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.052</td>
<td>< 0.052</td>
</tr>
<tr>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.013</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Rainfall Parameter</th>
<th>Units</th>
<th>N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH of Rainfall During Sampling Event</td>
<td>SU</td>
<td>1</td>
<td>6.4</td>
</tr>
<tr>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.32</td>
</tr>
<tr>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>95,000</td>
</tr>
<tr>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>630</td>
</tr>
</tbody>
</table>

gpm - gallons per minute.
N - Number of samples.
NR - Not required by permit.

^a The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
TABLE B-3H
2014 Storm Water Discharge Monitoring Data for Outfall Group 8

STORM WATER OUTFALL S27

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Group A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td>5.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease⁶</td>
<td>mg/L</td>
<td>1</td>
<td>< 1.4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.7</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorous, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.45</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>358</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>769</td>
<td>397</td>
</tr>
<tr>
<td>**Group B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.022</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.018</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.081</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>**Group C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>2</td>
<td>0.069</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.11</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>< 5.0</td>
<td>< 2.0</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>4.9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.013</td>
<td>< 0.013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rain Event Summary</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>pH of Rainfall During Sampling Event</td>
<td>SU</td>
<td>1</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Flow</td>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

N - Number of samples.
NR - Not required by permit.
⁶ The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.

gpm - gallons per minute.
TABLE B-3H (concluded)
2014 Storm Water Discharge Monitoring Data for Outfall Group 8
STORM WATER OUTFALL S35

<table>
<thead>
<tr>
<th>Parameter Group</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>First Flush Grab</th>
<th>Flow-weighted Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11/06/14</td>
<td>11/06/14</td>
</tr>
<tr>
<td>Group A Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOD₅</td>
<td>mg/L</td>
<td>2</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td></td>
<td>Oil & Grease*</td>
<td>mg/L</td>
<td>1</td>
<td><1.4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>SU</td>
<td>1</td>
<td>7.5</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Phosphorus, Total</td>
<td>mg/L</td>
<td>2</td>
<td>0.087</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>312</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>Solids, Total Suspended</td>
<td>mg/L</td>
<td>2</td>
<td>207</td>
<td>34</td>
</tr>
<tr>
<td>Group B Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aluminum, Total</td>
<td>mg/L</td>
<td>2</td>
<td>7.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Copper, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.010</td>
<td>0.0033</td>
</tr>
<tr>
<td></td>
<td>Iron, Total</td>
<td>mg/L</td>
<td>2</td>
<td>8.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Lead, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.012</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td>Zinc, Total Recoverable</td>
<td>mg/L</td>
<td>2</td>
<td>0.062</td>
<td>0.021</td>
</tr>
<tr>
<td>Group C Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ammonia (as NH₃)</td>
<td>mg/L</td>
<td>2</td>
<td>0.025</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrate (as N)</td>
<td>mg/L</td>
<td>2</td>
<td>0.16</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Nitrite (as N)</td>
<td>mg/L</td>
<td>2</td>
<td><0.020</td>
<td><0.020</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total (as N)</td>
<td>mg/L</td>
<td>2</td>
<td><1.1</td>
<td><0.65</td>
</tr>
<tr>
<td></td>
<td>Nitrogen, Total Kjeldahl</td>
<td>mg/L</td>
<td>2</td>
<td>0.89</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Surfactant (as LAS)</td>
<td>mg/L</td>
<td>2</td>
<td><0.013</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Rain Event Summary

<table>
<thead>
<tr>
<th>Rainfall</th>
<th>pH of Rainfall During Sampling Event</th>
<th>SU</th>
<th>1</th>
<th>7.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>Rainfall During Sampling Event</td>
<td>inches</td>
<td>--</td>
<td>0.17</td>
</tr>
<tr>
<td>Flow</td>
<td>Total Flow During Sampling Event</td>
<td>gallons</td>
<td>--</td>
<td>12,000</td>
</tr>
<tr>
<td>Flow</td>
<td>Maximum Flow Rate During Sampling Event</td>
<td>gpm</td>
<td>--</td>
<td>75</td>
</tr>
</tbody>
</table>

- **gpm** - gallons per minute.
- **N** - Number of samples.
- **NR** - Not required by permit.
- * The SPDES permit specifies that oil and grease concentration shall not exceed 15 mg/L.
APPENDIX B-4

Site Surface Water Data

TABLE B-4A
2014 Radioactivity and pH in Surface Water at Facility Yard Drainage (WNSP005)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WNSP005 Concentrations</th>
<th>Guideline or Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
<td>Average</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>μCi/mL</td>
<td>4</td>
<td>< 9.09E-10</td>
<td>-0.02±1.91E-09</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>μCi/mL</td>
<td>4</td>
<td>8.01E-08</td>
<td>2.24±0.05E-07</td>
</tr>
<tr>
<td>Tritium</td>
<td>μCi/mL</td>
<td>4</td>
<td>< 7.75E-08</td>
<td>5.01±9.29E-08</td>
</tr>
<tr>
<td>Sr-90</td>
<td>μCi/mL</td>
<td>2</td>
<td>5.23E-08</td>
<td>9.96±0.46E-08</td>
</tr>
<tr>
<td>Cs-137</td>
<td>μCi/mL</td>
<td>2</td>
<td>< 3.26E-09</td>
<td>1.03±3.34E-09</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>4</td>
<td>7.3</td>
<td>7.5</td>
</tr>
</tbody>
</table>

N - Number of samples.

a DOE ingestion-based DCSs for 100 mrem/yr dose limit are provided as a guideline for radiological results.

b New York State Water Quality Standards for Class “D” as a comparative reference for non-radiological results.

α Alpha as U-232.

β Beta as Sr-90.
Appendix B. Summary of Water Monitoring Data

TABLE B-4B
Comparison of 2014 Radioactivity Concentrations in Surface Water at the North Swamp (WNSW74A) With U.S. DOE-Derived Concentration Standards (DCSs)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Discharge Activity (^a)</th>
<th>Average Concentration (\mu Ci/mL)</th>
<th>DCS (\mu Ci/mL)</th>
<th>Ratio of Concentration to DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Ci)</td>
<td>(Becquerels) (^c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>-7.36±4.71E-05</td>
<td>-2.72±1.74E+06</td>
<td>-1.57±1.00E-09</td>
<td>NA (^e)</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>26</td>
<td>6.34±0.44E-04</td>
<td>2.34±0.16E+07</td>
<td>1.35±0.09E-08</td>
<td>NA (^f)</td>
</tr>
<tr>
<td>Tritium</td>
<td>26</td>
<td>2.10±1.28E-03</td>
<td>7.75±4.73E+07</td>
<td>4.46±2.72E-08</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>C-14</td>
<td>2</td>
<td>7.03±8.72E-04</td>
<td>2.60±3.23E+07</td>
<td>1.50±1.86E-08</td>
<td>6.2E-05</td>
</tr>
<tr>
<td>Sr-90</td>
<td>12</td>
<td>2.50±0.19E-04</td>
<td>9.24±0.70E+06</td>
<td>5.32±0.40E-09</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>-0.06±2.83E-05</td>
<td>-0.02±1.05E+06</td>
<td>-0.12±6.04E-10</td>
<td>3.3E-07</td>
</tr>
<tr>
<td>Cs-137</td>
<td>12</td>
<td>3.57±4.29E-05</td>
<td>1.32±1.59E+06</td>
<td>7.61±9.13E-10</td>
<td>3.0E-06</td>
</tr>
<tr>
<td>U-232f</td>
<td>2</td>
<td>-0.74±1.84E-06</td>
<td>-2.73±6.79E+04</td>
<td>-1.57±3.91E-11</td>
<td>9.8E-08</td>
</tr>
<tr>
<td>U-233/234(^f)</td>
<td>2</td>
<td>4.59±3.04E-06</td>
<td>1.70±1.12E+05</td>
<td>9.78±6.46E-11</td>
<td>6.6E-07</td>
</tr>
<tr>
<td>U-235/236(^f)</td>
<td>2</td>
<td>0.59±1.64E-06</td>
<td>2.19±6.06E+04</td>
<td>1.26±3.49E-11</td>
<td>7.2E-07</td>
</tr>
<tr>
<td>U-238f</td>
<td>2</td>
<td>4.60±3.10E-06</td>
<td>1.70±1.15E+05</td>
<td>9.79±6.59E-11</td>
<td>7.5E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>-0.66±1.29E-06</td>
<td>-2.44±4.76E+04</td>
<td>-1.40±2.74E-11</td>
<td>1.5E-07</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>0.25±1.92E-06</td>
<td>0.92±7.10E+04</td>
<td>0.53±4.09E-11</td>
<td>1.4E-07</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>0.09±1.21E-06</td>
<td>0.34±4.46E+04</td>
<td>0.20±2.57E-11</td>
<td>1.7E-07</td>
</tr>
</tbody>
</table>

Sum of Ratios: **0.0086**

Note: the average pH at this location was 7.3 Standard Units (SU).

- N - Number of samples.
- NA - Not applicable.
- \(^a\) Half-lives are listed in Table UI-4.
- \(^b\) Total estimated volume released: 4.70E+10 mL (1.24+07 gal).
- \(^c\) 1 Ci = 3.7E+10 Bq; 1Bq = 2.7E-11 Ci.
- \(^d\) DCSs are used as reference values for the application of best available technology per DOE Order 458.1.
- \(^e\) DCSs do not exist for indicator parameters gross alpha and gross beta.
- \(^f\) Total Uranium (g) = 8.64±0.38E+00; Average Total Uranium (µg/mL) = 1.84±0.08E-04.
- \(^g\) The DCS for Uranium-233 is used for this comparison.
TABLE B-4C
Comparison of 2014 Radioactivity Concentrations in Surface Water at the Northeast Swamp (WNSWAMP) With U.S. DOE-Derived Concentration Standards (DCSs)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Discharge Activity b</th>
<th>Average Concentration</th>
<th>DCS d</th>
<th>Ratio of Concentration to DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Ci)</td>
<td>(Becquerels) c</td>
<td>(µCi/mL)</td>
<td>(µCi/mL)</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>0.84±5.15E-05</td>
<td>0.31±1.91E+06</td>
<td>1.37±8.43E-10</td>
<td>NA</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>26</td>
<td>2.33±0.01E-01</td>
<td>8.62±0.02E+09</td>
<td>3.81±0.01E-06</td>
<td>NA</td>
</tr>
<tr>
<td>Tritium</td>
<td>26</td>
<td>3.16±1.75E-03</td>
<td>1.17±0.65E+08</td>
<td>5.17±2.87E-08</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>C-14</td>
<td>2</td>
<td>0.43±1.37E-03</td>
<td>1.58±5.08E+07</td>
<td>0.70±2.25E-08</td>
<td>6.2E-05</td>
</tr>
<tr>
<td>Sr-90</td>
<td>12</td>
<td>1.12±0.01E-01</td>
<td>4.13±0.02E+09</td>
<td>1.82±0.01E-06</td>
<td>1.1E-06</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>3.19±4.77E-05</td>
<td>1.18±1.77E+06</td>
<td>5.21±7.81E-10</td>
<td>3.3E-07</td>
</tr>
<tr>
<td>Cs-137</td>
<td>12</td>
<td>1.83±6.84E-05</td>
<td>0.68±2.53E+06</td>
<td>0.30±1.12E-09</td>
<td>3.0E-06</td>
</tr>
<tr>
<td>U-232</td>
<td>2</td>
<td>0.48±2.36E-06</td>
<td>1.77±8.72E+04</td>
<td>0.78±3.86E-11</td>
<td>9.8E-08</td>
</tr>
<tr>
<td>U-233/234</td>
<td>2</td>
<td>4.85±3.37E-06</td>
<td>1.79±1.25E+05</td>
<td>7.93±5.52E-11</td>
<td>6.6E-07</td>
</tr>
<tr>
<td>U-235/236</td>
<td>2</td>
<td>4.08±3.20E-06</td>
<td>1.51±1.19E+05</td>
<td>6.67±5.24E-11</td>
<td>7.2E-07</td>
</tr>
<tr>
<td>U-238</td>
<td>2</td>
<td>5.94±3.55E-06</td>
<td>2.20±1.31E+05</td>
<td>9.72±5.81E-11</td>
<td>7.5E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>0.10±1.74E-06</td>
<td>0.36±6.44E+04</td>
<td>0.16±2.85E-11</td>
<td>1.5E-07</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>0.59±2.07E-06</td>
<td>2.18±7.64E+04</td>
<td>0.96±3.38E-11</td>
<td>1.4E-07</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>-0.37±1.46E-06</td>
<td>-1.37±5.40E+04</td>
<td>-0.61±2.39E-11</td>
<td>1.7E-07</td>
</tr>
</tbody>
</table>

Note: the average pH at this location was 7.3 Standard Units (SU).
N - Number of samples.
NA - Not applicable.
d Half-lives are listed in Table UI-4.
b Total estimated volume released: 6.11E+10 mL (1.62+07 gal).
c 1 Ci = 3.7E+10 Bq: 1Bq = 2.7E-11 Ci.
d DCSs are used as reference values for the application of best available technology per DOE Order 458.1.
ed DCSs do not exist for indicator parameters gross alpha and gross beta.
f Total Uranium (g) = 2.14±0.05E+01 ; Average Total Uranium (µg/mL) = 3.50±0.09E-04.
g The DCS for Uranium-233 is used for this comparison.

TABLE B-4D
2014 Radioactivity in Surface Water Drainage Between the NDA and SDA (WNNDADR)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>Minimum</th>
<th>Average</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>µCi/mL</td>
<td>12</td>
<td>9.48E-10</td>
<td>0.73±1.07E-09</td>
<td>2.39E-09</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>µCi/mL</td>
<td>12</td>
<td>2.43E-08</td>
<td>3.31±0.15E-08</td>
<td>4.37E-08</td>
</tr>
<tr>
<td>Tritium</td>
<td>µCi/mL</td>
<td>12</td>
<td>2.81E-07</td>
<td>3.93±1.16E-07</td>
<td>5.03E-07</td>
</tr>
<tr>
<td>Sr-90</td>
<td>µCi/mL</td>
<td>2</td>
<td>1.56E-08</td>
<td>1.63±0.17E-08</td>
<td>1.70E-08</td>
</tr>
<tr>
<td>I-129</td>
<td>µCi/mL</td>
<td>2</td>
<td>< 5.79E-10</td>
<td>1.00±5.91E-10</td>
<td>< 6.03E-10</td>
</tr>
<tr>
<td>Cs-137</td>
<td>µCi/mL</td>
<td>12</td>
<td>< 1.41E-09</td>
<td>-0.14±2.87E-09</td>
<td>< 4.21E-09</td>
</tr>
</tbody>
</table>

N - Number of samples.
APPENDIX B-5

Ambient Surface Water Data

TABLE B-5A

2014 Radioactivity and pH in Surface Water Downstream of the WVDP in Cattaraugus Creek at Felton Bridge (WFFELBR)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WFFELBR Concentrations</th>
<th>Reference Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WFBIGBR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Background Range</td>
<td>Guideline" or Standard"</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>μCi/mL</td>
<td>12</td>
<td>0.99±1.38E-09</td>
<td>3.16E-09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>μCi/mL</td>
<td>12</td>
<td>3.01±1.35E-09</td>
<td>8.14E-09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>Tritium</td>
<td>μCi/mL</td>
<td>12</td>
<td>4.23±9.11E-08</td>
<td>1.20E-07</td>
</tr>
<tr>
<td>Sr-90</td>
<td>μCi/mL</td>
<td>12</td>
<td>3.11±8.97E-10</td>
<td>1.61E-09</td>
</tr>
<tr>
<td>Cs-137</td>
<td>μCi/mL</td>
<td>12</td>
<td>1.12±2.83E-09</td>
<td>3.06E-09</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>35</td>
<td>Range: 7.3-8.3</td>
<td></td>
</tr>
</tbody>
</table>

Note: Historical background data are from Bigelow Bridge, on Cattaraugus Creek upstream of WFFELBR. Sampling at WFBIGBR was discontinued in 2008. Range was calculated from the most recent 10 years of sampling, 1998-2007.

- N - Number of samples.
- "DOE ingestion-based DCSs for 100 mrem/yr dose limit are provided as a guideline for radiological results in the absence of water quality standards.
- New York Water Quality Standards for Class "B" as a comparative reference for non-radiological results.
- Values represent composite concentrations weighted to monthly stream flow.
- Alpha as U-232.
- Beta as Sr-90.

TABLE B-5B

2014 Water Quality of Surface Water Downstream of the WVDP in Buttermilk Creek at Thomas Corners Bridge (WFBCTCB)

RADIOACTIVITY CONCENTRATIONS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WFBCTCB Concentrations</th>
<th>Reference Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WFBCTCBKG"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Background Range</td>
<td>Guideline" or Standard"</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>μCi/mL</td>
<td>12</td>
<td>5.00±9.44E-10</td>
<td>2.10E-09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>μCi/mL</td>
<td>12</td>
<td>9.26±1.01E-09</td>
<td>1.20E-08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Tritium</td>
<td>μCi/mL</td>
<td>12</td>
<td>4.87±8.99E-08</td>
<td>1.08E-07</td>
</tr>
<tr>
<td>Sr-90</td>
<td>μCi/mL</td>
<td>2</td>
<td>1.51±1.29E-09</td>
<td>2.33E-09</td>
</tr>
<tr>
<td>Cs-137</td>
<td>μCi/mL</td>
<td>2</td>
<td>1.08±3.18E-09</td>
<td>< 3.24E-09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Historical background data are from Bigelow Bridge, on Cattaraugus Creek upstream of WFFELBR. Sampling at WFBIGBR was discontinued in 2008. Range was calculated from the most recent 10 years of sampling, 1998-2007.

- N - Number of samples.
- Background location.
- DOE ingestion based derived concentration standards (DCSs) for 100 mrem/yr dose limit are provided as a guideline for radiological results.
- Alpha as U-232.
- Beta as Sr-90.
TABLE B-5B (continued)

2014 Water Quality of Surface Water Downstream of the WVDP in Buttermilk Creek at Thomas Corners Bridge (WFBCTCB)

<table>
<thead>
<tr>
<th>CHEMICAL CONSTITUENTS</th>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WFBCTCB Concentration</th>
<th>Standard a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>alpha BHC</td>
<td>µg/L</td>
<td>2</td>
<td>< 0.030</td>
<td>< 0.050</td>
<td>0.002</td>
</tr>
<tr>
<td>Aluminum, soluble</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.10</td>
<td>< 0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.050</td>
<td>< 0.050</td>
<td>0.09–2.1</td>
</tr>
<tr>
<td>Antimony, total</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0030</td>
<td>< 0.0030</td>
<td>--</td>
</tr>
<tr>
<td>Arsenic, soluble</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0050</td>
<td>< 0.0050</td>
<td>0.150</td>
</tr>
<tr>
<td>Barium, total</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.054</td>
<td>0.059</td>
<td>--</td>
</tr>
<tr>
<td>Boron, total</td>
<td>mg/L</td>
<td>2</td>
<td>0.014</td>
<td>0.016</td>
<td>10.0</td>
</tr>
<tr>
<td>Bromide</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.80</td>
<td>1.1</td>
<td>--</td>
</tr>
<tr>
<td>Cadmium, soluble</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0010</td>
<td>< 0.0010</td>
<td>0.0030b</td>
</tr>
<tr>
<td>Calcium, total</td>
<td>mg/L</td>
<td>12</td>
<td>38</td>
<td>49</td>
<td>--</td>
</tr>
<tr>
<td>Chloride</td>
<td>mg/L</td>
<td>2</td>
<td>16</td>
<td>< 17</td>
<td>--</td>
</tr>
<tr>
<td>Chromium, soluble</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.010</td>
<td>< 0.010</td>
<td>0.106b</td>
</tr>
<tr>
<td>Cobalt, total</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0050</td>
<td>< 0.0050</td>
<td>0.005b</td>
</tr>
<tr>
<td>Copper, Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0050</td>
<td>< 0.0050</td>
<td>0.013b</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>mg/L</td>
<td>2</td>
<td>11</td>
<td>< 12</td>
<td>4.0 (min)</td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.10</td>
<td>< 0.10</td>
<td>3.14b</td>
</tr>
<tr>
<td>Hardness</td>
<td>mg/L</td>
<td>12</td>
<td>119</td>
<td>154</td>
<td>--</td>
</tr>
<tr>
<td>Iron, total</td>
<td>mg/L</td>
<td>2</td>
<td>0.76</td>
<td>0.78</td>
<td>0.30</td>
</tr>
<tr>
<td>Lead, soluble</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.00050</td>
<td>0.00050</td>
<td>0.0061b</td>
</tr>
<tr>
<td>Magnesium, total</td>
<td>mg/L</td>
<td>12</td>
<td>6.0</td>
<td>7.8</td>
<td>--</td>
</tr>
<tr>
<td>Manganese, total</td>
<td>mg/L</td>
<td>2</td>
<td>0.032</td>
<td>0.038</td>
<td>--</td>
</tr>
<tr>
<td>Mercury, Total, Method 1631</td>
<td>µg/L</td>
<td>2</td>
<td>0.00233</td>
<td>0.00243</td>
<td>--</td>
</tr>
<tr>
<td>Nickel, Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.040</td>
<td>0.040</td>
<td>0.075b</td>
</tr>
<tr>
<td>Nitrate-N</td>
<td>mg/L</td>
<td>2</td>
<td>0.29</td>
<td>0.32</td>
<td>--</td>
</tr>
<tr>
<td>Nitrite-N</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>0.020</td>
<td>0.10</td>
</tr>
<tr>
<td>NPOC</td>
<td>mg/L</td>
<td>2</td>
<td>3.0</td>
<td>3.3</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:

- **N** - Number of samples.
- **--** - No Reference Standard available for this analyte.
- a New York Water Quality Standards for Class "C" as a comparative reference for non-radiological results.
- b Calculated from maximum measurement of hardness of surface water stream at WFBCTCB.
- c Standards for cobalt, thallium and vanadium are applicable to the acid soluble fraction.
TABLE B-5B (concluded)

2014 Water Quality of Surface Water Downstream of the WVDP in Buttermilk Creek at Thomas Corners Bridge (WFBCTCB)

CHEMICAL CONSTITUENTS (concluded)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WFBCTCB Concentration</th>
<th>Standard<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>Oil & Grease</td>
<td>mg/L</td>
<td>2</td>
<td>< 5.0</td>
<td>< 5.0</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>2</td>
<td>7.7</td>
<td>8.2</td>
</tr>
<tr>
<td>Selenium, Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0010</td>
<td>< 0.0010</td>
</tr>
<tr>
<td>Sodium, Total</td>
<td>mg/L</td>
<td>2</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Solids, Total Dissolved (TDS)</td>
<td>mg/L</td>
<td>2</td>
<td>138</td>
<td>165</td>
</tr>
<tr>
<td>Solids, Total Suspended (TSS)</td>
<td>mg/L</td>
<td>2</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>2</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Sulfide</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.052</td>
<td>< 0.052</td>
</tr>
<tr>
<td>Surfactants</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.027</td>
<td>< 0.029</td>
</tr>
<tr>
<td>Thallium, Total</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.0080</td>
<td>< 0.0080</td>
</tr>
<tr>
<td>Titanium, Total</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.050</td>
<td>< 0.050</td>
</tr>
<tr>
<td>TOX</td>
<td>mg/L</td>
<td>2</td>
<td>0.018</td>
<td>0.021</td>
</tr>
<tr>
<td>Vanadium, Total</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.010</td>
<td>< 0.010</td>
</tr>
<tr>
<td>Zinc, Dissolved</td>
<td>mg/L</td>
<td>2</td>
<td>< 0.020</td>
<td>< 0.020</td>
</tr>
</tbody>
</table>

N - Number of samples.

-- No Reference Standard available for this analyte.

^a New York Water Quality Standards for Class "C" as a comparative reference for non-radiological results.

^b Calculated from maximum measurement of hardness of surface water stream at WFBCTCB.

^c Standards for cobalt, thallium and vanadium are applicable to the acid soluble fraction.
TABLE B-5C

2014 Radioactivity of Surface Water Downstream of the WVDP at Franks Creek (WNSP006)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WNSP006 Concentrations</th>
<th>Reference Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>µCi/mL</td>
<td>32</td>
<td>1.12±1.45E-09</td>
<td>1.11E-08</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>µCi/mL</td>
<td>32</td>
<td>4.55±0.21E-08</td>
<td>1.82E-07</td>
</tr>
<tr>
<td>Tritium</td>
<td>µCi/mL</td>
<td>32</td>
<td>5.82±9.35E-08</td>
<td>1.57E-07</td>
</tr>
<tr>
<td>C-14</td>
<td>µCi/mL</td>
<td>4</td>
<td>0.79±2.73E-08</td>
<td>2.47E-08</td>
</tr>
<tr>
<td>Sr-90</td>
<td>µCi/mL</td>
<td>12</td>
<td>1.50±0.21E-08</td>
<td>3.19E-08</td>
</tr>
<tr>
<td>Tc-99</td>
<td>µCi/mL</td>
<td>4</td>
<td>-0.62±2.33E-09</td>
<td>< 2.67E-09</td>
</tr>
<tr>
<td>I-129</td>
<td>µCi/mL</td>
<td>4</td>
<td>0.60±8.08E-10</td>
<td>< 8.53E-10</td>
</tr>
<tr>
<td>Cs-137</td>
<td>µCi/mL</td>
<td>12</td>
<td>1.68±3.77E-09</td>
<td>5.53E-09</td>
</tr>
<tr>
<td>U-232</td>
<td>µCi/mL</td>
<td>4</td>
<td>1.33±0.81E-10</td>
<td>3.05E-10</td>
</tr>
<tr>
<td>U-233/234</td>
<td>µCi/mL</td>
<td>4</td>
<td>3.02±1.02E-10</td>
<td>3.60E-10</td>
</tr>
<tr>
<td>U-235/236</td>
<td>µCi/mL</td>
<td>4</td>
<td>2.32±3.79E-11</td>
<td>3.18E-11</td>
</tr>
<tr>
<td>U-238</td>
<td>µCi/mL</td>
<td>4</td>
<td>2.20±0.87E-10</td>
<td>3.06E-10</td>
</tr>
<tr>
<td>Total U</td>
<td>µCi/mL</td>
<td>4</td>
<td>5.68±0.18E-04</td>
<td>7.47E-04</td>
</tr>
<tr>
<td>Pu-238</td>
<td>µCi/mL</td>
<td>4</td>
<td>0.77±2.94E-11</td>
<td>< 4.46E-11</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>µCi/mL</td>
<td>4</td>
<td>1.52±3.82E-11</td>
<td>< 5.79E-11</td>
</tr>
<tr>
<td>Am-241</td>
<td>µCi/mL</td>
<td>4</td>
<td>1.05±3.64E-11</td>
<td>< 5.21E-11</td>
</tr>
</tbody>
</table>

N - Number of samples.

\(a\) Background location.

\(b\) DOE ingestion-based DCSs for 100 mrem/yr dose limit are provided as a guideline for radiological results.

\(c\) Alpha as U-232.

\(d\) Beta as Sr-90.

\(e\) DCS for U-233 is used for this comparison.

TABLE B-5D

2014 Radioactivity and pH in Surface Water at Erdman Brook (WNERB53)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WNERB53 Concentrations</th>
<th>Reference Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>µCi/mL</td>
<td>4</td>
<td>0.27±1.33E-09</td>
<td>< 1.84E-09</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>µCi/mL</td>
<td>4</td>
<td>6.61±1.22E-09</td>
<td>8.32E-09</td>
</tr>
<tr>
<td>Tritium</td>
<td>µCi/mL</td>
<td>4</td>
<td>1.03±0.96E-07</td>
<td>1.66E-07</td>
</tr>
<tr>
<td>Sr-90</td>
<td>µCi/mL</td>
<td>2</td>
<td>3.08±1.25E-09</td>
<td>4.40E-09</td>
</tr>
<tr>
<td>Cs-137</td>
<td>µCi/mL</td>
<td>2</td>
<td>-0.45±2.64E-09</td>
<td>< 2.76E-09</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>4</td>
<td>Range: 7.3–7.8</td>
<td></td>
</tr>
</tbody>
</table>

N - Number of samples.

\(a\) Background data are from Buttermilk Creek, upstream of the WVDP. Sampling for nonradiological data was discontinued.

at this location in 2008. The pH range was calculated from the most recent 10 years of sampling, 1998–2007.

\(b\) DOE ingestion-based DCSs for 100 mrem/yr dose limit are provided as a guideline for radiological results.

\(c\) New York State Water Quality Standards for surface waters Class “D” as a standard for non-radiological results.

\(d\) Alpha as U-232.

\(e\) Beta as Sr-90.
Table B-5E
2014 Radioactivity and pH in Surface Water at Franks Creek (WNFRC67)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WNFRC67 Concentrations</th>
<th>Reference Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>µCi/mL</td>
<td>4</td>
<td>-2.48±9.12E-10<1.16E-09</td>
<td>12</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>µCi/mL</td>
<td>4</td>
<td>1.79±0.73E-09 3.18E-09</td>
<td>12</td>
</tr>
<tr>
<td>Tritium</td>
<td>µCi/mL</td>
<td>4</td>
<td>9.80±9.53E-08 1.40E-07</td>
<td>12</td>
</tr>
<tr>
<td>Sr-90</td>
<td>µCi/mL</td>
<td>2</td>
<td>-5.02±8.22E-10<9.93E-10</td>
<td>2</td>
</tr>
<tr>
<td>Cs-137</td>
<td>µCi/mL</td>
<td>2</td>
<td>1.88±2.76E-09 3.27E-09</td>
<td>2</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>4</td>
<td>Range: 7.4–7.8</td>
<td>292</td>
</tr>
</tbody>
</table>

N - Number of samples.

- Background data are from Buttermilk Creek, upstream of the WVDP. Sampling for nonradiological data was discontinued.

- DOE ingestion-based DCSs for 100 mrem/yr dose limit are provided as a guideline for radiological results.

- New York State Water Quality Standards for Class "D" surface waters as a standard for non-radiological results.

- Alpha as U-232.

- Beta as Sr-90.

Table B-5F
Historical Radioactivity and pH in Surface Water at Bigelow Bridge Cattaraugus Creek Background (WFBIGBR)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WFBIGBR Concentrations</th>
<th>Reference Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>µCi/mL</td>
<td>98</td>
<td>0.45±1.05E-09 4.62E-09</td>
<td>9.8E-08<</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>µCi/mL</td>
<td>98</td>
<td>2.64±1.35E-09 1.37E-08</td>
<td>1.1E-06<</td>
</tr>
<tr>
<td>Tritium</td>
<td>µCi/mL</td>
<td>98</td>
<td>0.71±7.79E-08 2.65E-07</td>
<td>1.9E-03<</td>
</tr>
<tr>
<td>Sr-90</td>
<td>µCi/mL</td>
<td>98</td>
<td>1.27±1.46E-09 1.10E-08</td>
<td>1.1E-06<</td>
</tr>
<tr>
<td>Cs-137</td>
<td>µCi/mL</td>
<td>98</td>
<td>0.59±3.27E-09 5.29E-09</td>
<td>3.0E-06<</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>98</td>
<td>Range: 5.8–8.3</td>
<td>6.5–8.5<</td>
</tr>
</tbody>
</table>

N - Number of samples.

- Sampling was discontinued in 2008. Data represent measurements from the most recent 10 years of sampling, 1998 through 2007.

- DOE ingestion-based DCSs for 100 mrem/yr dose limit are provided as a guideline for radiological results.

- The New York Water Quality Standard for Class "B" is provided as a comparative reference for pH.

- Alpha as U-232.

- Beta as Sr-90.
TABLE B-5G
2014 Radioactivity and pH in Surface Water at Fox Valley Road Buttermilk Creek Background (WFBCBKG)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WFBCBKG<sup>a</sup> Concentrations</th>
<th>Reference Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
<td>Guideline<sup>b</sup> or Standard<sup>c</sup></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>µCi/mL</td>
<td>12</td>
<td>2.28±9.13E-10</td>
<td>9.8E-08<sup>d</sup></td>
</tr>
<tr>
<td>Gross Beta</td>
<td>µCi/mL</td>
<td>12</td>
<td>2.18±0.73E-09</td>
<td>1.1E-06<sup>e</sup></td>
</tr>
<tr>
<td>Tritium</td>
<td>µCi/mL</td>
<td>12</td>
<td>2.65±8.99E-08</td>
<td>1.9E-03</td>
</tr>
<tr>
<td>C-14</td>
<td>µCi/mL</td>
<td>2</td>
<td>0.98±2.57E-08</td>
<td>< 2.88E-08</td>
</tr>
<tr>
<td>Sr-90</td>
<td>µCi/mL</td>
<td>2</td>
<td>2.32±7.42E-10</td>
<td>< 9.64E-10</td>
</tr>
<tr>
<td>Tc-99</td>
<td>µCi/mL</td>
<td>2</td>
<td>-1.51±2.49E-09</td>
<td>< 2.50E-09</td>
</tr>
<tr>
<td>I-129</td>
<td>µCi/mL</td>
<td>2</td>
<td>0.48±1.02E-09</td>
<td>< 1.14E-09</td>
</tr>
<tr>
<td>Cs-137</td>
<td>µCi/mL</td>
<td>2</td>
<td>-0.90±3.68E-09</td>
<td>< 3.87E-09</td>
</tr>
<tr>
<td>U-232</td>
<td>µCi/mL</td>
<td>2</td>
<td>3.49±6.61E-11</td>
<td>< 7.59E-11</td>
</tr>
<tr>
<td>U-233/234</td>
<td>µCi/mL</td>
<td>2</td>
<td>5.21±8.40E-11</td>
<td>< 1.08E-10</td>
</tr>
<tr>
<td>U-235/236</td>
<td>µCi/mL</td>
<td>2</td>
<td>1.20±5.66E-11</td>
<td>< 7.53E-11</td>
</tr>
<tr>
<td>U-238</td>
<td>µCi/mL</td>
<td>2</td>
<td>2.35±5.96E-11</td>
<td>< 7.53E-11</td>
</tr>
<tr>
<td>Total U</td>
<td>µg/mL</td>
<td>2</td>
<td>1.43±0.08E-04</td>
<td>1.52E-04</td>
</tr>
<tr>
<td>Pu-238</td>
<td>µCi/mL</td>
<td>2</td>
<td>-0.05±3.83E-11</td>
<td>< 4.22E-11</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>µCi/mL</td>
<td>2</td>
<td>-1.4±3.99E-11</td>
<td>< 4.57E-11</td>
</tr>
<tr>
<td>Am-241</td>
<td>µCi/mL</td>
<td>2</td>
<td>1.56±4.41E-11</td>
<td>< 5.61E-11</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>292</td>
<td>Range: 6.4–8.7</td>
<td>6.0–9.5</td>
</tr>
</tbody>
</table>

N - Number of samples.
-- No Guideline or standard available for these analytes.
^aRadiological data are from samples collected in CY 2014. Sampling for nonradiological constituents was discontinued in 2008. The pH values represent measurements from the most recent 10 years of sampling, 1998 through 2007.
^bDOE ingestion-based DCSs for 100 mrem/yr dose limit are provided as a guideline for radiological results.
^cThe New York Water Quality Standard for Class "D" is provided as a comparative reference for pH.
^dAlpha as U-232.
^eBeta as Sr-90.
^fDCS for U-233 used for this comparison.
APPENDIX B-6
Potable Water (Drinking Water) Data

TABLE B-6A
2014 Water Quality Results in Drinking Water at Tap Locations Inside the MPPB and RHWF
(drinking water supplied by surface water - January to September 2014)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WNDNKMP (Main Plant)</th>
<th>WNDNKRH (RHWF)</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>µCi/mL</td>
<td>1</td>
<td>2.05±6.37E-10</td>
<td>NA</td>
<td>1.5E-08</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>µCi/mL</td>
<td>1</td>
<td>2.08±0.75E-09</td>
<td>NA</td>
<td>5.0E-08</td>
</tr>
<tr>
<td>Tritium</td>
<td>µCi/mL</td>
<td>1</td>
<td>-5.28±9.10E-08</td>
<td>NA</td>
<td>2.0E-05</td>
</tr>
<tr>
<td>Halocetic Acids-Five (5)</td>
<td>mg/L</td>
<td>2</td>
<td>NA</td>
<td>0.028</td>
<td>0.060</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td>0.034</td>
<td>0.080</td>
</tr>
</tbody>
</table>

N - Number of samples.
NA - Not applicable, constituent not analyzed.

* New York State Department of Health MCLs for drinking water used as a comparative reference.

TABLE B-6B
2014 Water Quality Results in Finished Water
(drinking water supplied by surface water - January to September 2014)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>Utility Room Filtered Water Concentrations (WNDFILTER)</th>
<th>Standard or Guideline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.0004</td>
</tr>
<tr>
<td>Arsenic, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.0014</td>
</tr>
<tr>
<td>Barium, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td>0.026</td>
</tr>
<tr>
<td>Beryllium, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.0003</td>
</tr>
<tr>
<td>Cadmium, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.001</td>
</tr>
<tr>
<td>Chromium, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.007</td>
</tr>
<tr>
<td>Cyanide, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.02</td>
</tr>
<tr>
<td>Fluoride</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.2</td>
</tr>
<tr>
<td>Free Residual Chlorine</td>
<td>mg/L</td>
<td>911</td>
<td>0.08</td>
<td>10.10</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.05</td>
</tr>
<tr>
<td>Manganese, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td>0.017</td>
</tr>
<tr>
<td>Mercury, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.0002</td>
</tr>
<tr>
<td>Nickel, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.005</td>
</tr>
<tr>
<td>POC</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.002</td>
</tr>
<tr>
<td>TOC</td>
<td>mg/L</td>
<td>3</td>
<td>< 1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Selenium, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.002</td>
</tr>
<tr>
<td>Thallium, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.0003</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>1,561</td>
<td>0.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Zinc, Total</td>
<td>mg/L</td>
<td>1</td>
<td>NA</td>
<td><0.01</td>
</tr>
</tbody>
</table>

N - Number of samples.
NA - Not applicable, constituents sampled annually.

* New York State Department of Health MCLs for drinking water.
* Principal organic contaminants collected every 6 years for surface water source. Collected in 2013.
* A treatment standard of 0.3 NTU applies to the 95th percentile on a monthly basis.
TABLE B-6C
2014 Water Quality Results in Raw (Untreated) Potable Water
(drinking water supplied by surface water - January to September 2014)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>Untreated Raw Water Concentrations (WNURAW1 and WNURRAW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>mg/L</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>mg/L</td>
<td>36</td>
<td>0.28</td>
</tr>
<tr>
<td>Solids, Total Dissolved</td>
<td>mg/L</td>
<td>11</td>
<td>84</td>
</tr>
<tr>
<td>TOC</td>
<td>mg/L</td>
<td>3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Note: Alkalinity and TOC are reported to the Cattaraugus County Department of Health. Total iron and total dissolved solids were sampled as part of the WVDP's SPDES permit.
N - Number of samples.
TOC - Total organic carbon.

TABLE B-6D
2014 Biological and Chlorine Results from Potable Water at Various Site Tap Water Locations
(drinking water supplied by surface water and groundwater - January to December 2014)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>Various Site Tap Water Locations Results</th>
<th>Standard</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>NA</td>
<td>16</td>
<td>Negative</td>
<td>one positive sample</td>
<td></td>
</tr>
<tr>
<td>Free Residual Chlorine</td>
<td>mg/L</td>
<td>16</td>
<td>Range: 0.34–2.20</td>
<td>4.0 (max)</td>
<td></td>
</tr>
<tr>
<td>Total Coliform</td>
<td>NA</td>
<td>16</td>
<td>2 Positive b: 14 Negative</td>
<td>two or more positive samples</td>
<td></td>
</tr>
</tbody>
</table>

N - Number of samples.
NA - Not applicable.
a New York State Department of Health MCLs for drinking water or EPA MCLGs, whichever is more stringent.
b Coliform was detected in the tap water from two locations sampled in May 2014. These tap water locations were resampled after the sink filters were cleaned and found to be free of coliform.
c Analyzed by Cattaraugus County Health Department (CCHD).

TABLE B-6E
2014 Nitrate Results From the Utility Room Raw Water
(drinking water supplied by surface water - January to September 2014)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>Date Collected</th>
<th>Annual Concentration</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate-N</td>
<td>mg/L</td>
<td>1</td>
<td>3/4/2014</td>
<td><1.0</td>
<td>10</td>
</tr>
</tbody>
</table>

N - Number of samples.
a New York State Department of Health MCLs for drinking water.
b Analyzed by Cattaraugus County Health Department (CCHD).

TABLE B-6F
2014 Copper and Lead Results from On-Site Tap Water Locations at the WVDP
(drinking water supplied by surface water - January to September 2014)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>N</th>
<th>WNDNK01</th>
<th>WNDNK06</th>
<th>WNDNK10</th>
<th>WNDNK13</th>
<th>WNDNK15</th>
<th>90th Percentile</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper, Total</td>
<td>mg/L</td>
<td>1</td>
<td>0.13</td>
<td>0.061</td>
<td>0.0064</td>
<td>0.46</td>
<td>0.11</td>
<td>0.30</td>
<td>1.3</td>
</tr>
<tr>
<td>Lead, Total</td>
<td>mg/L</td>
<td>1</td>
<td>0.0023</td>
<td>0.0035</td>
<td>0.0023</td>
<td>0.0010</td>
<td>0.0041</td>
<td>0.0038</td>
<td><0.015</td>
</tr>
</tbody>
</table>

N - Number of samples
a The 90th percentile calculation is used to evaluate exceedance of the action limit.
b New York State Department of Health MCLs for drinking water used as a comparative reference.
TABLE B-6G

2014 Water Quality Results in Treated Potable Water
(dinking water supplied by groundwater - September to December 2014)

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Date Collected</th>
<th>Analyte</th>
<th>Results (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNDFIN</td>
<td>Dec-14</td>
<td>Principal Organic Contaminants (POCs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1,1-Trichloroethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1,2-Trichloroethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1-Dichloroethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1-Dichloroethene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,1-Dichloropropene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2,3-Trichlorobenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2,3-Trichloropropane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2,4-Trichlorobenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2,4-Trimethylbenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2-Dichlorobenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2-Dichloroethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2-Dichloropropene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,3,5-Trimethylbenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,3-Dichlorobenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,3-Dichloropropene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,4-Dichlorobenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,2-Dichloropropene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-Chlorotoluene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-Chlorotoluene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromobenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromochloromethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bromomethane</td>
<td>< 0.0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbon Tetrachloride</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chlorobenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloroethane</td>
<td>< 0.0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloromethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cis-1,2-Dichloroethene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cis-1,3-Dichloropropene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dibromomethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dichlorodifluoromethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ethylbenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hexachlorobutadiene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isopropylbenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methylene Chloride</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-Butylbenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n-Propylbenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-Isopropyltoluene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sec-Butylbenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Styrene</td>
<td>< 0.00050</td>
</tr>
</tbody>
</table>
TABLE B-6G (continued)

2014 Water Quality Results in Treated Potable Water

(dinking water supplied by groundwater - September to December 2014)

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Date Collected</th>
<th>Analyte</th>
<th>Results (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNDFIN</td>
<td>Dec-14</td>
<td>Tert-Butylbenzene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetrachloroethene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toluene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-1,2-Dichloroethene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trans-1,3-Dichloropropene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichloroethene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trichlorofluoromethane</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinyl chloride</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinyl chloride</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xylenes</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m-Xylene and p-Xylene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o-Xylene</td>
<td>< 0.00050</td>
</tr>
<tr>
<td>WNDFIN</td>
<td>Dec-14</td>
<td>Methyl-tert butyl-ether (MTBE)</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinyl chloride</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synthetic Organic Chemicals (SOCs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dec-14</td>
<td>Dibromochloropropane (DBCP)</td>
<td>< 0.000020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethylene Dibromide (EDB)</td>
<td>< 0.000020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>chlordane</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lindane</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-1016</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-1221</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-1232</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-1242</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-1248</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-1254</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCB-1260</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCBs, total</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>toxaphene</td>
<td>< 0.00025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,4,5-TP</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,4-D</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dalapon</td>
<td>< 0.0050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dicamba</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dinoseb</td>
<td>< 0.0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pentachlorophenol</td>
<td>< 0.000020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pictoram</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td>Dec-14</td>
<td>Aldrin</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Butachlor</td>
<td>< 0.000050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dieldrin</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metolachlor</td>
<td>< 0.000020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metribuzin</td>
<td>< 0.000020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Propachlor</td>
<td>< 0.000020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alachlor</td>
<td>< 0.000020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>atrazine</td>
<td>< 0.000020</td>
</tr>
</tbody>
</table>
TABLE B-6G (concluded)
2014 Water Quality Results in Treated Potable Water
(drinking water supplied by groundwater - September to December 2014)

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Date Collected</th>
<th>Analyte</th>
<th>Results (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNDFIN</td>
<td>Dec-14</td>
<td>endrin</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heptachlor</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heptachlor epoxide</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hexachlorobenzene</td>
<td>< 0.0020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hexachlorocyclo-pentadiene</td>
<td>< 0.00020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>methoxychlor</td>
<td>< 0.000025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>simazine</td>
<td>< 0.00050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aldicarb</td>
<td>< 0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aldicarb sulfone</td>
<td>< 0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aldicarb sulfoxide</td>
<td>< 0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbaryl</td>
<td>< 0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-Hydroxycarbofuran</td>
<td>< 0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methomyl</td>
<td>< 0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>carbofuran</td>
<td>< 0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>oxymal</td>
<td>< 0.0025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,3,7,8-TCDD (dioxin)</td>
<td>< 0.00000000475</td>
</tr>
</tbody>
</table>

TABLE B-6H
2014 Radiological Water Quality Results in Raw (Untreated) Potable Water
(drinking water supplied by groundwater - September to December 2014)

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Date Collected</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Background</td>
<td></td>
<td>7.61E-09</td>
<td>1.56E-08</td>
<td>1.78E-07</td>
</tr>
</tbody>
</table>

Supply Well #1 Pumping
- WNDRAW1 Oct-14 0.00±8.96E-10 2.06±0.87E-09 -0.40±1.00E-07
- WNDRAW1 Nov-14 2.02±1.35E-09 4.19±0.88E-09 0.57±8.39E-08
- WNDRAW1 Dec-14 0.12±1.11E-09 3.21±0.85E-09 -8.74±8.67E-08

Supply Well #2 Pumping
- WNDRAW2 Oct-14 -0.57±1.34E-09 3.72±0.92E-09 0.30±1.07E-07
- WNDRAW2 Nov-14 0.21±1.04E-09 3.86±0.82E-09 5.38±8.97E-08
- WNDRAW2 Dec-14 6.62±8.24E-10 3.49±0.82E-09 -3.72±8.97E-08

Background concentrations are used as the screening levels for radiological parameters monitored under the WVDP Drinking Water Monitoring Plan, with water supplied by the groundwater supply wells installed in 2014. Background concentrations for groundwater are provided in Table D-1A.
TABLE B-6I

2014 Radiological Indicator Results from the Source Water Protection Plan Wells

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Date Collected</th>
<th>pH</th>
<th>SU</th>
<th>Conductivity µmhos/cm@25 ºC</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Concentration</td>
<td>NA</td>
<td>NA</td>
<td>7.61E-09</td>
<td>1.56E-08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WNCT272</td>
<td>24-Sep-14</td>
<td>8.20</td>
<td>166</td>
<td>2.88±7.20E-10</td>
<td>2.35±0.64E-09</td>
<td></td>
</tr>
<tr>
<td>WNCT272</td>
<td>9-Oct-14</td>
<td>8.63</td>
<td>176</td>
<td>0.50±1.13E-09</td>
<td>1.75±0.80E-09</td>
<td></td>
</tr>
<tr>
<td>WNCT272</td>
<td>23-Oct-14</td>
<td>7.97</td>
<td>248</td>
<td>-1.31±9.40E-10</td>
<td>2.03±0.95E-09</td>
<td></td>
</tr>
<tr>
<td>WNCT272</td>
<td>4-Nov-14</td>
<td>8.36</td>
<td>92</td>
<td>4.00±5.68E-10</td>
<td>1.34±0.51E-09</td>
<td></td>
</tr>
<tr>
<td>WNCT272</td>
<td>22-Nov-14</td>
<td>8.53</td>
<td>233</td>
<td>0.56±1.00E-09</td>
<td>2.27±0.85E-09</td>
<td></td>
</tr>
<tr>
<td>WNCT272</td>
<td>2-Dec-14</td>
<td>8.51</td>
<td>109</td>
<td>7.02±4.71E-10</td>
<td>3.34±0.65E-09</td>
<td></td>
</tr>
<tr>
<td>WNCT272</td>
<td>18-Dec-14</td>
<td>8.70</td>
<td>56</td>
<td>1.57±0.65E-09</td>
<td>1.08±0.70E-09</td>
<td></td>
</tr>
<tr>
<td>WNCT272</td>
<td>29-Dec-14</td>
<td>8.78</td>
<td>99</td>
<td>6.38±6.50E-10</td>
<td>2.91±7.35E-10</td>
<td></td>
</tr>
<tr>
<td>WNEHMKE</td>
<td>24-Sep-14</td>
<td>7.96</td>
<td>262</td>
<td>-5.80±6.22E-10</td>
<td>2.92±0.69E-09</td>
<td></td>
</tr>
<tr>
<td>WNEHMKE</td>
<td>9-Oct-14</td>
<td>8.27</td>
<td>262</td>
<td>8.86±9.14E-10</td>
<td>1.49±0.82E-09</td>
<td></td>
</tr>
<tr>
<td>WNEHMKE</td>
<td>23-Oct-14</td>
<td>8.00</td>
<td>251</td>
<td>0.70±1.04E-09</td>
<td>1.60±1.00E-09</td>
<td></td>
</tr>
<tr>
<td>WNEHMKE</td>
<td>4-Nov-14</td>
<td>7.69</td>
<td>244</td>
<td>0.57±1.25E-09</td>
<td>3.24±1.02E-09</td>
<td></td>
</tr>
<tr>
<td>WNEHMKE</td>
<td>22-Nov-14</td>
<td>7.99</td>
<td>256</td>
<td>7.37±8.34E-10</td>
<td>1.71±0.88E-09</td>
<td></td>
</tr>
<tr>
<td>WNEHMKE</td>
<td>2-Dec-14</td>
<td>8.29</td>
<td>155</td>
<td>0.62±7.55E-10</td>
<td>1.45±0.79E-09</td>
<td></td>
</tr>
<tr>
<td>WNEHMKE</td>
<td>18-Dec-14</td>
<td>8.26</td>
<td>232</td>
<td>3.43±7.29E-10</td>
<td>1.99±0.70E-09</td>
<td></td>
</tr>
<tr>
<td>WNEHMKE</td>
<td>29-Dec-14</td>
<td>8.40</td>
<td>232</td>
<td>3.43±7.29E-10</td>
<td>1.99±0.70E-09</td>
<td></td>
</tr>
<tr>
<td>WWCOURT</td>
<td>24-Sep-14</td>
<td>7.65</td>
<td>426</td>
<td>-1.24±1.37E-09</td>
<td>3.61±0.98E-09</td>
<td></td>
</tr>
<tr>
<td>WWCOURT</td>
<td>9-Oct-14</td>
<td>7.66</td>
<td>200</td>
<td>0.48±1.10E-09</td>
<td>2.68±0.86E-09</td>
<td></td>
</tr>
<tr>
<td>WWCOURT</td>
<td>23-Oct-14</td>
<td>7.39</td>
<td>306</td>
<td>-7.37±8.34E-10</td>
<td>1.71±0.88E-09</td>
<td></td>
</tr>
<tr>
<td>WWCOURT</td>
<td>4-Nov-14</td>
<td>7.28</td>
<td>315</td>
<td>-0.80±7.82E-10</td>
<td>2.11±0.84E-09</td>
<td></td>
</tr>
<tr>
<td>WWCOURT</td>
<td>22-Nov-14</td>
<td>7.40</td>
<td>275</td>
<td>0.91±7.76E-10</td>
<td>9.36±7.13E-10</td>
<td></td>
</tr>
<tr>
<td>WWCOURT</td>
<td>2-Dec-14</td>
<td>7.18</td>
<td>261</td>
<td>-7.15±7.63E-10</td>
<td>1.32±0.72E-09</td>
<td></td>
</tr>
<tr>
<td>WWCOURT</td>
<td>18-Dec-14</td>
<td>7.56</td>
<td>192</td>
<td>0.64±5.95E-10</td>
<td>2.17±0.70E-09</td>
<td></td>
</tr>
<tr>
<td>WWCOURT</td>
<td>29-Dec-14</td>
<td>7.49</td>
<td>349</td>
<td>0.11±1.13E-09</td>
<td>3.07±0.86E-09</td>
<td></td>
</tr>
</tbody>
</table>

NA - Not applicable.

SU - Standard units.

Background Concentration as shown in Table D-1A, Appendix D, Summary of Groundwater Monitoring Data.
APPENDIX C
Summary of Air Monitoring Data

TABLE C-1
Total Radioactivity Released at Main Plant Stack (ANSTACK) in 2014 and Comparison of Discharge Concentrations with U.S. DOE-Derived Concentration Standards (DCSs)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Total Activity Released (Ci)</th>
<th>Average Concentration (µCi/mL)</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>DCS (µCi/mL)</th>
<th>Ratio of Average Concentration to DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>3.10±0.51E-07</td>
<td>4.17±0.69E-16</td>
<td>1.04E-15</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>26</td>
<td>4.92±0.16E-06</td>
<td>6.61±0.22E-15</td>
<td>3.26E-14</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>H-3</td>
<td>26</td>
<td>1.82±0.07E-03</td>
<td>2.44±0.09E-12</td>
<td>3.96E-12</td>
<td>2.1E-07</td>
<td><0.0001</td>
</tr>
<tr>
<td>Co-60</td>
<td>2</td>
<td>6.46±3.62E-08</td>
<td>8.69±4.86E-17</td>
<td>1.52E-16</td>
<td>3.6E-10</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>1.06±0.11E-06</td>
<td>1.42±0.15E-15</td>
<td>1.54E-15</td>
<td>1.0E-10</td>
<td><0.0001</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>1.40±0.09E-05</td>
<td>1.88±0.12E-14</td>
<td>2.00E-14</td>
<td>1.0E-10</td>
<td>0.0002</td>
</tr>
<tr>
<td>Cs-137</td>
<td>2</td>
<td>1.91±0.09E-06</td>
<td>2.57±0.11E-15</td>
<td>3.25E-15</td>
<td>8.8E-10</td>
<td><0.0001</td>
</tr>
<tr>
<td>Eu-154</td>
<td>2</td>
<td>9.81±9.62E-08</td>
<td>1.32±1.29E-16</td>
<td>< 2.04E-16</td>
<td>7.5E-11</td>
<td><0.0001</td>
</tr>
<tr>
<td>U-232<sup>e</sup></td>
<td>2</td>
<td>1.75±4.00E-09</td>
<td>2.35±5.38E-18</td>
<td>< 8.91E-18</td>
<td>4.7E-13</td>
<td><0.0001</td>
</tr>
<tr>
<td>U-233/234<sup>e</sup></td>
<td>2</td>
<td>1.82±0.70E-08</td>
<td>2.45±0.94E-17</td>
<td>2.84E-17</td>
<td>1.0E-12<sup>f</sup></td>
<td><0.0001</td>
</tr>
<tr>
<td>U-235/236<sup>e</sup></td>
<td>2</td>
<td>0.76±2.18E-09</td>
<td>1.02±5.61E-18</td>
<td>< 9.48E-18</td>
<td>1.2E-12</td>
<td><0.0001</td>
</tr>
<tr>
<td>U-238<sup>e</sup></td>
<td>2</td>
<td>2.48±0.83E-08</td>
<td>3.33±1.11E-17</td>
<td>4.41E-17</td>
<td>1.3E-12</td>
<td><0.0001</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>4.89±0.99E-08</td>
<td>6.57±1.33E-17</td>
<td>8.27E-17</td>
<td>8.8E-14</td>
<td>0.0007</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>9.29±1.34E-08</td>
<td>1.25±0.18E-16</td>
<td>1.25E-16</td>
<td>8.1E-14</td>
<td>0.0015</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>1.83±0.30E-07</td>
<td>2.46±0.41E-16</td>
<td>2.50E-16</td>
<td>9.7E-14</td>
<td>0.0025</td>
</tr>
<tr>
<td>Sum of Ratios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0051</td>
</tr>
</tbody>
</table>

N - Number of samples.
NA - Not applicable.

^a Half-lives are listed in Table UI-4.
^b Total volume released at 50,000 cubic feet per minute = 7.44E+14 mL/year.
^c DCSs are used as reference values for the application of best available technology per DOE Order 458.1.
^d DCSs do not exist for indicator parameters gross alpha and gross beta.
^e Total Uranium = 6.03±0.12E-02 g; average = 8.10±0.17E-11 µg/mL, includes uranium contribution from glass fiber filter matrix.
^f DCS for Uranium-233 used for this comparison.
TABLE C-2
2014 Effluent Airborne Radioactivity at Vitrification System HVAC (ANVITSK)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Total Activity Released (Ci)</th>
<th>Average Concentration (µCi/mL)</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>DCS (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>0.34±1.36E⁻⁰⁸</td>
<td>0.90±3.66E⁻¹⁷</td>
<td>1.89E⁻¹⁶</td>
<td>NA(^b)</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>26</td>
<td>7.11±3.93E⁻⁰⁸</td>
<td>1.91±1.06E⁻¹⁶</td>
<td>5.07E⁻¹⁶</td>
<td>NA(^b)</td>
</tr>
<tr>
<td>Co-60</td>
<td>2</td>
<td>-0.73±2.17E⁻⁰⁸</td>
<td>-1.98±5.84E⁻¹⁷</td>
<td><1.09E⁻¹⁶</td>
<td>3.6E⁻¹⁰</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>1.28±2.25E⁻⁰⁸</td>
<td>3.45±6.06E⁻¹⁷</td>
<td><9.78E⁻¹⁷</td>
<td>1.0E⁻¹⁰</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>2.26±0.86E⁻⁰⁷</td>
<td>6.08±2.30E⁻¹⁶</td>
<td>6.30E⁻¹⁶</td>
<td>1.0E⁻¹⁰</td>
</tr>
<tr>
<td>Cs-137</td>
<td>2</td>
<td>-0.13±1.94E⁻⁰⁸</td>
<td>-0.34±5.22E⁻¹⁷</td>
<td><9.80E⁻¹⁷</td>
<td>8.8E⁻¹⁰</td>
</tr>
<tr>
<td>Eu-154</td>
<td>2</td>
<td>6.72±6.62E⁻⁰⁸</td>
<td>1.81±1.78E⁻¹⁶</td>
<td>3.75E⁻¹⁶</td>
<td>7.5E⁻¹¹</td>
</tr>
<tr>
<td>U-232(^c)</td>
<td>2</td>
<td>-0.65±1.44E⁻⁰⁹</td>
<td>-1.75±3.88E⁻¹⁸</td>
<td><6.00E⁻¹⁸</td>
<td>4.7E⁻¹³</td>
</tr>
<tr>
<td>U-233/234(^c)</td>
<td>2</td>
<td>8.76±2.92E⁻⁰⁹</td>
<td>2.35±0.79E⁻¹⁷</td>
<td>2.60E⁻¹⁷</td>
<td>1.0E⁻¹²(^d)</td>
</tr>
<tr>
<td>U-235/236(^c)</td>
<td>2</td>
<td>0.85±1.17E⁻⁰⁹</td>
<td>2.28±3.14E⁻¹⁸</td>
<td><5.18E⁻¹⁸</td>
<td>1.2E⁻¹²</td>
</tr>
<tr>
<td>U-238(^c)</td>
<td>2</td>
<td>8.47±2.63E⁻⁰⁹</td>
<td>2.28±0.71E⁻¹⁷</td>
<td>2.93E⁻¹⁷</td>
<td>1.3E⁻¹²</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>-0.50±1.37E⁻⁰⁹</td>
<td>-1.36±3.68E⁻¹⁸</td>
<td><6.79E⁻¹⁸</td>
<td>8.8E⁻¹⁴</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>-0.06±1.33E⁻⁰⁹</td>
<td>-0.15±3.58E⁻¹⁸</td>
<td><5.39E⁻¹⁸</td>
<td>8.1E⁻¹⁴</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>-0.13±2.07E⁻⁰⁹</td>
<td>-0.36±5.56E⁻¹⁸</td>
<td><1.02E⁻¹⁷</td>
<td>9.7E⁻¹⁴</td>
</tr>
</tbody>
</table>

N - Number of samples.
NA - Not applicable.
\(^a\) DOE-derived concentration standards (DCS’s) are used as reference values for the application of best available technology per DOE Order 458.1.
\(^b\) DCSs do not exist for indicator parameters gross alpha and gross beta.
\(^c\) Total Uranium = 2.65±0.05E⁻⁰² g; average = 7.13±0.14E⁻¹¹ µg/mL, includes uranium contribution from glass fiber filter matrix.
\(^d\) DCS for Uranium-233 used for this comparison.

TABLE C-3
2014 Airborne Radioactivity at Contact Size-Reduction Facility (ANCSRFK)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DCS (^a)</td>
</tr>
<tr>
<td>Ventilation Off;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Did Not Operate During CY 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-4

2014 Effluent Airborne Radioactivity at Supernatant Treatment System (ANSTSTK)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Total Activity Released (Ci)</th>
<th>Average Concentration (µCi/mL)</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>DCS<sup>a</sup> (µCi/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>1.88±2.84E-09</td>
<td>2.81±4.25E-17</td>
<td>2.73E-16</td>
<td>NA<sup>b</sup></td>
</tr>
<tr>
<td>Gross Beta</td>
<td>26</td>
<td>1.95±0.81E-08</td>
<td>2.91±1.21E-16</td>
<td>1.59E-15</td>
<td>NA<sup>b</sup></td>
</tr>
<tr>
<td>H-3</td>
<td>26</td>
<td>8.38±5.12E-06</td>
<td>1.25±0.76E-13</td>
<td>5.84E-13</td>
<td>2.1E-07</td>
</tr>
<tr>
<td>Co-60</td>
<td>2</td>
<td>0.92±3.89E-09</td>
<td>1.38±5.82E-17</td>
<td>< 9.66E-17</td>
<td>3.6E-10</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>-1.17±4.57E-09</td>
<td>-1.75±6.82E-17</td>
<td>< 1.10E-16</td>
<td>1.0E-10</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>6.16±0.15E-06</td>
<td>9.20±0.23E-14</td>
<td>1.07E-13</td>
<td>1.0E-10</td>
</tr>
<tr>
<td>Cs-137</td>
<td>2</td>
<td>9.82±4.66E-09</td>
<td>1.47±0.70E-16</td>
<td>2.13E-16</td>
<td>8.8E-10</td>
</tr>
<tr>
<td>Eu-154</td>
<td>2</td>
<td>0.98±1.05E-08</td>
<td>1.46±1.56E-16</td>
<td>< 2.88E-16</td>
<td>7.5E-11</td>
</tr>
<tr>
<td>U-232<sup>c</sup></td>
<td>2</td>
<td>3.21±3.43E-10</td>
<td>4.79±5.12E-18</td>
<td>< 9.10E-18</td>
<td>4.7E-13</td>
</tr>
<tr>
<td>U-233/234<sup>c</sup></td>
<td>2</td>
<td>1.87±0.68E-09</td>
<td>2.80±1.01E-17</td>
<td>3.65E-17</td>
<td>1.0E-12<sup>d</sup></td>
</tr>
<tr>
<td>U-235/236<sup>c</sup></td>
<td>2</td>
<td>1.80±3.40E-10</td>
<td>2.69±5.08E-18</td>
<td>< 7.66E-18</td>
<td>1.2E-12</td>
</tr>
<tr>
<td>U-238<sup>c</sup></td>
<td>2</td>
<td>1.87±0.68E-09</td>
<td>2.80±1.01E-17</td>
<td>2.96E-17</td>
<td>1.3E-12</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>1.70±2.66E-10</td>
<td>2.53±3.97E-18</td>
<td>< 5.79E-18</td>
<td>8.8E-14</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>1.84±3.66E-10</td>
<td>2.75±5.46E-18</td>
<td>< 9.45E-18</td>
<td>8.1E-14</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>3.51±4.96E-10</td>
<td>5.24±7.40E-18</td>
<td>< 1.34E-17</td>
<td>9.7E-14</td>
</tr>
</tbody>
</table>

N - Number of samples.

^a DOE-derived concentration standards (DCS’s) are used as reference values for the application of best available technology per DOE Order 458.1.

^b DCSs do not exist for indicator parameters gross alpha and gross beta.

^c Total Uranium = 6.00±0.13E-03 g; average = 8.97±0.20E-11 µg/mL, includes uranium contribution from glass fiber filter matrix.

^d DCS for Uranium-233 used for this comparison.
TABLE C-5

2014 Effluent Airborne Radioactivity at Container Sorting and Packaging Facility (ANCSPFK)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Total Activity Released (Ci)</th>
<th>Average Concentration (µCi/mL)</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>DCS(^a) (µCi/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>22</td>
<td>4.98±0.96E-09</td>
<td>3.56±0.69E-16</td>
<td>3.82E-15</td>
<td>NA(^b)</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>22</td>
<td>5.34±2.09E-09</td>
<td>3.82±1.49E-16</td>
<td>1.03E-15</td>
<td>NA(^b)</td>
</tr>
<tr>
<td>Co-60</td>
<td>2</td>
<td>-0.28±1.17E-09</td>
<td>-2.00±8.34E-17</td>
<td>< 1.52E-16</td>
<td>3.6E-10</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>0.72±1.24E-09</td>
<td>5.18±8.85E-17</td>
<td>< 1.94E-16</td>
<td>1.0E-10</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>7.10±0.71E-08</td>
<td>5.07±0.51E-15</td>
<td>5.37E-15</td>
<td>1.0E-10</td>
</tr>
<tr>
<td>Cs-137</td>
<td>2</td>
<td>-0.36±1.00E-09</td>
<td>-2.60±7.16E-17</td>
<td>< 1.27E-16</td>
<td>8.8E-10</td>
</tr>
<tr>
<td>Eu-154</td>
<td>2</td>
<td>-2.52±3.34E-09</td>
<td>-1.80±2.39E-16</td>
<td>< 4.26E-16</td>
<td>7.5E-11</td>
</tr>
<tr>
<td>U-232(^c)</td>
<td>2</td>
<td>-0.31±8.37E-11</td>
<td>-0.22±5.99E-18</td>
<td>< 1.43E-17</td>
<td>4.7E-13</td>
</tr>
<tr>
<td>U-233/234(^c)</td>
<td>2</td>
<td>1.14±0.28E-09</td>
<td>8.15±2.01E-17</td>
<td>1.89E-16</td>
<td>1.0E-12(^d)</td>
</tr>
<tr>
<td>U-235/236(^c)</td>
<td>2</td>
<td>6.56±9.01E-11</td>
<td>4.69±6.44E-18</td>
<td>< 1.50E-17</td>
<td>1.2E-12</td>
</tr>
<tr>
<td>U-238(^c)</td>
<td>2</td>
<td>9.53±2.54E-10</td>
<td>6.81±1.82E-17</td>
<td>1.50E-16</td>
<td>1.3E-12</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>6.01±2.03E-10</td>
<td>4.30±1.45E-17</td>
<td>1.17E-16</td>
<td>8.8E-14</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>7.16±2.08E-10</td>
<td>5.12±1.48E-17</td>
<td>1.33E-16</td>
<td>8.1E-14</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>1.79±0.32E-09</td>
<td>1.28±0.23E-16</td>
<td>3.40E-16</td>
<td>9.7E-14</td>
</tr>
</tbody>
</table>

N - Number of samples. NA - Not applicable.

\(^a\) DOE-derived concentration standards (DCS's) are used as reference values for the application of best available technology per DOE Order 458.1.

\(^b\) DCSs do not exist for indicator parameters gross alpha and gross beta.

\(^c\) Total Uranium = 2.83±0.06E-03 g; average = 2.02±0.05E-10 µg/mL, includes uranium contribution from glass fiber filter matrix.

\(^d\) DCS for Uranium-233 used for this comparison.
TABLE C-6

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Total Activity Released (Ci)</th>
<th>Average Concentration (µCi/mL)</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>DCS a (µCi/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>109</td>
<td>9.52±3.25E-09</td>
<td>5.94±2.02E-17</td>
<td>1.70E-14</td>
<td>NA b</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>109</td>
<td>4.75±0.91E-08</td>
<td>2.96±0.56E-16</td>
<td>1.62E-14</td>
<td>NA b</td>
</tr>
<tr>
<td>Co-60</td>
<td>2</td>
<td>1.62±2.00E-09</td>
<td>1.01±1.25E-17</td>
<td>1.36E-17</td>
<td>3.6E-10</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>0.78±2.19E-09</td>
<td>0.49±1.37E-17</td>
<td>< 2.95E-17</td>
<td>1.0E-10</td>
</tr>
<tr>
<td>Cs-137</td>
<td>2</td>
<td>-0.35±1.97E-09</td>
<td>-0.22±1.23E-17</td>
<td>< 3.14E-17</td>
<td>8.8E-10</td>
</tr>
<tr>
<td>Eu-154</td>
<td>2</td>
<td>0.81±5.73E-09</td>
<td>0.51±3.57E-17</td>
<td>< 8.62E-17</td>
<td>7.5E-11</td>
</tr>
<tr>
<td>U-232 c</td>
<td>2</td>
<td>0.38±1.66E-10</td>
<td>0.24±1.03E-18</td>
<td>< 2.11E-18</td>
<td>4.7E-13</td>
</tr>
<tr>
<td>U-233/234 c</td>
<td>2</td>
<td>3.37±0.54E-09</td>
<td>2.10±0.34E-17</td>
<td>2.60E-17</td>
<td>1.0E-12 d</td>
</tr>
<tr>
<td>U-235/236 c</td>
<td>2</td>
<td>1.20±1.73E-10</td>
<td>0.75±1.08E-18</td>
<td>< 2.13E-18</td>
<td>1.2E-12</td>
</tr>
<tr>
<td>U-238 c</td>
<td>2</td>
<td>3.13±0.51E-09</td>
<td>1.95±0.32E-17</td>
<td>2.95E-17</td>
<td>1.3E-12</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>-0.13±1.34E-10</td>
<td>-0.82±8.33E-19</td>
<td>< 1.47E-18</td>
<td>8.8E-14</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>1.35±1.99E-10</td>
<td>0.84±1.24E-18</td>
<td>< 2.54E-18</td>
<td>8.1E-14</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>2.27±2.17E-10</td>
<td>1.42±1.36E-18</td>
<td>< 2.80E-18</td>
<td>9.7E-14</td>
</tr>
</tbody>
</table>

N - Number of samples.
NA - Not applicable.

a DOE-derived concentration standards (DCS’s) are used as reference values for the application of best available technology per DOE Order 458.1.

b DCSs do not exist for indicator parameters gross alpha and gross beta.

c Total Uranium = 1.02±0.02E-02 g; average = 6.35±0.13E-11 µg/mL, includes uranium contribution from glass fiber filter matrix.

d DCS for Uranium-233 used for this comparison.
TABLE C-7
2014 Effluent Airborne Radioactivity at Remote-Handled Waste Facility (ANRHWFK)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>N</th>
<th>Total Activity Released (Ci)</th>
<th>Average Concentration (µCi/mL)</th>
<th>Maximum Concentration (µCi/mL)</th>
<th>DCS (µCi/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>26</td>
<td>-3.98±6.56E-09</td>
<td>-3.33±5.50E-17</td>
<td>2.90E-16</td>
<td>NA</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>26</td>
<td>1.21±2.00E-08</td>
<td>1.02±1.67E-16</td>
<td>9.44E-16</td>
<td>NA</td>
</tr>
<tr>
<td>Co-60</td>
<td>2</td>
<td>-2.45±8.21E-09</td>
<td>-2.06±6.88E-17</td>
<td>< 1.23E-16</td>
<td>3.6E-10</td>
</tr>
<tr>
<td>Sr-90</td>
<td>2</td>
<td>0.21±1.24E-08</td>
<td>0.18±1.04E-16</td>
<td>< 1.50E-16</td>
<td>1.0E-10</td>
</tr>
<tr>
<td>I-129</td>
<td>2</td>
<td>1.40±3.63E-08</td>
<td>1.17±3.04E-16</td>
<td>< 5.50E-16</td>
<td>1.0E-10</td>
</tr>
<tr>
<td>Cs-137</td>
<td>2</td>
<td>0.75±8.24E-09</td>
<td>0.63±6.90E-17</td>
<td>< 1.28E-16</td>
<td>8.8E-10</td>
</tr>
<tr>
<td>Eu-154</td>
<td>2</td>
<td>0.78±2.41E-08</td>
<td>0.65±2.02E-16</td>
<td>< 3.55E-16</td>
<td>7.5E-11</td>
</tr>
<tr>
<td>U-232</td>
<td>2</td>
<td>-1.82±5.99E-10</td>
<td>-1.52±5.02E-18</td>
<td>< 7.65E-18</td>
<td>4.7E-13</td>
</tr>
<tr>
<td>U-233/234</td>
<td>2</td>
<td>1.21±1.18E-09</td>
<td>1.02±0.99E-17</td>
<td>< 1.52E-17</td>
<td>1.0E-12</td>
</tr>
<tr>
<td>U-235/236</td>
<td>2</td>
<td>-1.26±5.80E-10</td>
<td>-1.05±4.86E-18</td>
<td>< 7.08E-18</td>
<td>1.2E-12</td>
</tr>
<tr>
<td>U-238</td>
<td>2</td>
<td>3.32±1.29E-09</td>
<td>2.78±1.08E-17</td>
<td>3.38E-17</td>
<td>1.3E-12</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2</td>
<td>-0.63±4.31E-10</td>
<td>-0.53±3.61E-18</td>
<td>< 5.18E-18</td>
<td>8.8E-14</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>2</td>
<td>-0.20±8.41E-10</td>
<td>-0.17±7.05E-18</td>
<td>< 1.09E-17</td>
<td>8.1E-14</td>
</tr>
<tr>
<td>Am-241</td>
<td>2</td>
<td>0.96±1.30E-09</td>
<td>0.80±1.09E-17</td>
<td>< 1.99E-17</td>
<td>9.7E-14</td>
</tr>
</tbody>
</table>

* N - Number of samples.
* NA - Not applicable.
* DOE-derived concentration standards (DCS’s) are used as reference values for the application of best available technology per DOE Order 458.1.
* DCSs do not exist for indicator parameters gross alpha and gross beta.
* Total Uranium = 9.14±0.19E-03 g; average = 7.66±0.16E-11 µg/mL, includes uranium contribution from glass fiber filter matrix.
* DCS for Uranium-233 used for this comparison.
TABLE C-8
2014 Gross Alpha and Gross Beta Radioactivity at Nearsite Ambient Air Sampling Locations and at Background Great Valley Location (AFGRVAL)

<table>
<thead>
<tr>
<th>Monitoring Location</th>
<th>N</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>AF01_N</td>
<td>26</td>
<td>7.94±2.16E-16</td>
<td>1.30E-15</td>
</tr>
<tr>
<td>AF02_NNE</td>
<td>26</td>
<td>7.36±1.70E-16</td>
<td>1.11E-15</td>
</tr>
<tr>
<td>AF03_NE</td>
<td>26</td>
<td>8.06±1.95E-16</td>
<td>1.22E-15</td>
</tr>
<tr>
<td>AF04_ENE</td>
<td>26</td>
<td>7.76±1.74E-16</td>
<td>1.15E-15</td>
</tr>
<tr>
<td>AF05_E</td>
<td>26</td>
<td>8.52±1.81E-16</td>
<td>1.17E-15</td>
</tr>
<tr>
<td>AF06_ESE</td>
<td>26</td>
<td>8.26±1.77E-16</td>
<td>1.24E-15</td>
</tr>
<tr>
<td>AF07_SE</td>
<td>26</td>
<td>7.91±1.93E-16</td>
<td>1.13E-15</td>
</tr>
<tr>
<td>AF08_SSE</td>
<td>26</td>
<td>8.24±1.80E-16</td>
<td>1.15E-15</td>
</tr>
<tr>
<td>AF09_S</td>
<td>26</td>
<td>8.05±1.76E-16</td>
<td>1.41E-15</td>
</tr>
<tr>
<td>AF10_SSW</td>
<td>26</td>
<td>8.28±1.81E-16</td>
<td>1.53E-15</td>
</tr>
<tr>
<td>AF11_SW</td>
<td>26</td>
<td>8.19±1.79E-16</td>
<td>1.18E-15</td>
</tr>
<tr>
<td>AF12_WSW</td>
<td>26</td>
<td>8.35±1.78E-16</td>
<td>1.13E-15</td>
</tr>
<tr>
<td>AF13_W</td>
<td>26</td>
<td>8.11±1.87E-16</td>
<td>1.27E-15</td>
</tr>
<tr>
<td>AF14_WNW</td>
<td>26</td>
<td>8.82±2.36E-16</td>
<td>1.27E-15</td>
</tr>
<tr>
<td>AF15_NW</td>
<td>26</td>
<td>8.01±1.70E-16</td>
<td>1.24E-15</td>
</tr>
<tr>
<td>AF16_NNW</td>
<td>26</td>
<td>8.50±1.77E-16</td>
<td>1.38E-15</td>
</tr>
<tr>
<td>AF16HNNW</td>
<td>26</td>
<td>8.58±1.61E-16</td>
<td>1.35E-15</td>
</tr>
<tr>
<td>AFGRVAL</td>
<td>26</td>
<td>8.69±1.80E-16</td>
<td>1.35E-15</td>
</tr>
</tbody>
</table>

N - Number of samples.
TABLE C-9
2014 Ambient Airborne Radioactivity and Comparison to the NESHAP Concentration Levels for Environmental Compliance

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>Annual Average Concentration (µCi/mL)</th>
<th>Complaince Ratio (Sum of Ratios)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sr-90</td>
<td>2.1E-15</td>
</tr>
<tr>
<td>AF13_WP</td>
<td>4</td>
<td>0.36±7.1E-16</td>
<td>-2.4±4.7E-16</td>
</tr>
<tr>
<td>AF02_NNE</td>
<td>4</td>
<td>1.94±7.6E-16</td>
<td>0.58±7.4E-16</td>
</tr>
<tr>
<td>AF03_NE</td>
<td>4</td>
<td>3.30±9.9E-16</td>
<td>0.23±1.0E-16</td>
</tr>
<tr>
<td>AF04_E</td>
<td>4</td>
<td>-0.97±7.0E-16</td>
<td>1.87±8.6E-16</td>
</tr>
<tr>
<td>AF05_E</td>
<td>4</td>
<td>-1.10±7.3E-16</td>
<td>0.19±1.0E-16</td>
</tr>
<tr>
<td>AF06_ESE</td>
<td>4</td>
<td>1.15±8.5E-16</td>
<td>0.28±1.0E-16</td>
</tr>
<tr>
<td>AF07_SE</td>
<td>4</td>
<td>0.68±7.8E-16</td>
<td>0.63±9.4E-16</td>
</tr>
<tr>
<td>AF08_SSE</td>
<td>4</td>
<td>-1.51±6.9E-16</td>
<td>2.2±9.0E-16</td>
</tr>
<tr>
<td>AF09_S</td>
<td>4</td>
<td>0.16±7.7E-16</td>
<td>2.4±8.2E-16</td>
</tr>
<tr>
<td>AF10_SSW</td>
<td>4</td>
<td>0.59±8.0E-16</td>
<td>0.20±9.3E-16</td>
</tr>
<tr>
<td>AF11_SW</td>
<td>4</td>
<td>-1.44±7.4E-16</td>
<td>1.06±8.6E-16</td>
</tr>
<tr>
<td>AF12_WWS</td>
<td>4</td>
<td>-0.74±7.5E-16</td>
<td>0.96±7.9E-16</td>
</tr>
<tr>
<td>AF13_W</td>
<td>4</td>
<td>1.56±9.7E-16</td>
<td>0.30±1.0E-16</td>
</tr>
<tr>
<td>AM14_WNV</td>
<td>4</td>
<td>-2.95±8.6E-16</td>
<td>-2.7±9.5E-16</td>
</tr>
<tr>
<td>AF15_NW</td>
<td>4</td>
<td>-2.81±6.6E-16</td>
<td>0.98±7.4E-16</td>
</tr>
<tr>
<td>AF16_NNW</td>
<td>4</td>
<td>0.24±8.3E-16</td>
<td>2.18±8.7E-16</td>
</tr>
<tr>
<td>AF16HNNW</td>
<td>4</td>
<td>0.01±4.7E-16</td>
<td>0.10±1.6E-16</td>
</tr>
<tr>
<td>AFGRVAL</td>
<td>4</td>
<td>0.23±6.7E-16</td>
<td>3.77±9.6E-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>Annual Average Concentration (µCi/mL)</th>
<th>Sr-90</th>
<th>I-129</th>
<th>Cs-137</th>
<th>U-232</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF01_N</td>
<td>4</td>
<td>0.34±1.1E-16</td>
<td>-4.3±4.7E-16</td>
<td>0.02±1.1E-16</td>
<td>-1.7±7.5E-18</td>
<td></td>
</tr>
<tr>
<td>AF02_NNE</td>
<td>4</td>
<td>3.15±9.3E-16</td>
<td>-0.2±5.1E-16</td>
<td>0.32±1.2E-16</td>
<td>5.56±8.6E-18</td>
<td></td>
</tr>
<tr>
<td>AF03_NE</td>
<td>4</td>
<td>0.23±1.5E-16</td>
<td>1.34±8.2E-16</td>
<td>0.47±1.1E-16</td>
<td>0.30±1.2E-17</td>
<td></td>
</tr>
<tr>
<td>AF04_E</td>
<td>4</td>
<td>0.00±1.3E-16</td>
<td>2.79±9.5E-16</td>
<td>-0.2±1.6E-16</td>
<td>-1.7±4.8E-18</td>
<td></td>
</tr>
<tr>
<td>AF05_E</td>
<td>4</td>
<td>0.68±1.4E-16</td>
<td>0.07±1.2E-16</td>
<td>-0.4±1.2E-16</td>
<td>-2.2±4.9E-18</td>
<td></td>
</tr>
<tr>
<td>AF06_ESE</td>
<td>4</td>
<td>0.72±1.3E-16</td>
<td>3.54±8.9E-16</td>
<td>0.04±1.2E-16</td>
<td>0.24±1.0E-17</td>
<td></td>
</tr>
<tr>
<td>AF07_SE</td>
<td>4</td>
<td>0.77±1.4E-16</td>
<td>-0.7±1.8E-16</td>
<td>0.32±1.2E-16</td>
<td>-0.93±7.7E-18</td>
<td></td>
</tr>
<tr>
<td>AF08_SSE</td>
<td>4</td>
<td>-0.57±1.3E-16</td>
<td>-1.5±5.0E-16</td>
<td>0.26±1.0E-16</td>
<td>0.76±8.3E-18</td>
<td></td>
</tr>
<tr>
<td>AF09_S</td>
<td>4</td>
<td>0.23±1.8E-16</td>
<td>1.85±7.5E-16</td>
<td>0.27±1.0E-16</td>
<td>-0.33±9.1E-18</td>
<td></td>
</tr>
<tr>
<td>AF10_SSW</td>
<td>4</td>
<td>0.44±1.3E-16</td>
<td>0.21±8.7E-16</td>
<td>-0.11±1.0E-16</td>
<td>-0.2±7.0E-18</td>
<td></td>
</tr>
<tr>
<td>AF11_SW</td>
<td>4</td>
<td>-0.37±1.0E-16</td>
<td>-0.3±7.7E-16</td>
<td>0.04±1.0E-16</td>
<td>2.97±8.0E-18</td>
<td></td>
</tr>
<tr>
<td>AF12_WSW</td>
<td>4</td>
<td>-0.29±1.0E-16</td>
<td>0.97±8.0E-16</td>
<td>-0.6±1.2E-16</td>
<td>2.62±8.9E-18</td>
<td></td>
</tr>
<tr>
<td>AF13_W</td>
<td>4</td>
<td>0.54±1.2E-16</td>
<td>2.35±8.0E-16</td>
<td>-0.41±1.1E-16</td>
<td>2.02±7.8E-18</td>
<td></td>
</tr>
<tr>
<td>AF14_WNW</td>
<td>4</td>
<td>-0.80±1.4E-16</td>
<td>-0.5±1.4E-16</td>
<td>-0.24±1.5E-16</td>
<td>-0.34±9.0E-18</td>
<td></td>
</tr>
<tr>
<td>AF15_NW</td>
<td>4</td>
<td>0.13±1.5E-16</td>
<td>-0.5±6.7E-16</td>
<td>0.05±1.4E-16</td>
<td>1.79±9.4E-18</td>
<td></td>
</tr>
<tr>
<td>AF16_NNW</td>
<td>4</td>
<td>-0.38±1.1E-16</td>
<td>3.17±9.5E-16</td>
<td>1.18±9.7E-16</td>
<td>-1.48±8.9E-18</td>
<td></td>
</tr>
<tr>
<td>AF16HNNW</td>
<td>4</td>
<td>-0.13±2.4E-17</td>
<td>3.17±9.5E-17</td>
<td>0.22±2.9E-17</td>
<td>1.35±2.3E-18</td>
<td></td>
</tr>
</tbody>
</table>

- NESHAP Concentration Levels for Environmental Compliance, 40 CFR Part 61, Appendix E, Table 2.
- Location AF16HNNW is the high volume sampler at the same location as AF16_NNW.
- The low volume result for I-129 is reported at the high volume sampler in order to calculate an equivalent sum of ratios and estimated dose. I-129 is not measured at the high volume sampler.
- AFGRVAL is the background sampling location, approximately 29 km south of the WVDP.
APPENDIX D-1

Summary of Groundwater Screening Levels and Practical Quantitation Limits

Groundwater Sampling Methodology

Groundwater samples are collected from monitoring wells using either dedicated Teflon well bailers or bladder pumps. Bailers are used in low-yield wells; bladder pumps are used in wells with good water-yielding characteristics. This sampling equipment is dedicated to an individual well to reduce the likelihood of sample contamination from external materials or cross contamination.

To ensure that only representative groundwater is sampled, three well volumes are removed (purged) from the well before the actual samples are collected. In low-yield wells, pumping or bailing to dryness provides sufficient purging. Conductivity and pH are measured before and after sampling to confirm the geochemical stability of the groundwater during sampling.

The bailer, a tube with a check valve at the bottom, is lowered slowly into the well to minimize agitation of the water column. The bailer containing the groundwater is then withdrawn from the well and emptied into a sample container. Bladder pumps use compressed air to gently squeeze a Teflon bladder that prevents air contact with the groundwater as it is pumped into a sample container with a minimum of agitation and mixing. A check valve ensures that the water flows in only one direction.

Groundwater samples are cooled and preserved, with chemicals if required, to minimize chemical and/or biological changes after sample collection. A strict chain-of-custody protocol is followed for all samples collected by the WVDP.

Groundwater Screening Levels (GSLs) for Radiological Constituents: Background values for radiological constituents in groundwater were derived for the Corrective Measures Studies in 2009 using data from background wells 301, 401, 706, and 1302 in the sand and gravel unit on the north plateau for samples collected from 1991 through September 2009. The 95% upper confidence limit (UCL) was applied in a similar statistical calculation for each radiological constituent. The site-specific GSLs for radiological constituents were set to the greater of the background levels or the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Class GA groundwater quality standard for each radiological constituent. The NYSDEC TOGS standards are only established for gross alpha and gross beta concentrations, consequently most of the screening values for radiological constituents are set to equal the site background values. The GSLs for radiological constituents are listed in Table D-1A.

The site monitoring well radiological concentrations presented in the data tables in Appendix D-2 are compared with these GSLs. Bolding indicates that the measured concentration exceeded the GSL.

Groundwater Screening Levels for Metals: The calculated WVDP GSLs for metals were established in WVDP-494, North Plateau Plume Area Characterization Report. The GSLs for metals were selected as greater of the NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards or background concentrations in groundwater as documented in Appendix E of WVDP-494. The groundwater background concentrations were derived from a statistical calculation of the mean plus two standard deviations for metals data collected from four background wells (301, 401, 706, and well 1302). Elevated levels of chromium and nickel were identified in site wells constructed with stainless steel (which includes 301, 401, and 706), as presented to NYSDEC in a report entitled Final Report: Evaluation of the Pilot Program to Investigate Chromium & Nickel Concentration in Groundwater in the Sand & Gravel Unit (WVNSCO, 1998). The findings of this report were subsequently accepted by NYSDEC in their memorandum dated September 15, 1998.
Consequently, the majority of the chromium and nickel results from these stainless-steel wells were omitted from the dataset used to establish background, relying primarily on the results from polyvinyl chloride (PVC) well 1302 for these two constituents. The groundwater screening values for metals are listed in Table D-1B.

The site monitoring well metals concentrations presented in the data tables in Appendix D-2 are compared with these GSLs. Bolding indicates that the measured concentration exceeded the GSL.
TABLE D-1A

Groundwater Screening Levels (GSLs) for Radiological Constituents

<table>
<thead>
<tr>
<th>Radiological Constituent</th>
<th>Range of Observed Concentrations From Background Monitoring Wells 301, 401, 706, and 1302<sup>a</sup> (µCi/mL)</th>
<th>WVDP 95% UCL Background Groundwater Concentration<sup>a</sup> (µCi/mL)</th>
<th>NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards<sup>b</sup> (µCi/mL)</th>
<th>WVDP GSLs<sup>c</sup> (µCi/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross alpha</td>
<td>< 7.7E-10 – 1.55E-08</td>
<td>7.61E-09</td>
<td>1.50E-08</td>
<td>1.50E-08</td>
</tr>
<tr>
<td>Gross beta</td>
<td>< 2.15E-09 – 2.35E-08</td>
<td>1.56E-08</td>
<td>1.00E-06</td>
<td>1.00E-06</td>
</tr>
<tr>
<td>Tritium</td>
<td>< 3.17E-08 – 2.63E-07</td>
<td>1.78E-07</td>
<td>NE</td>
<td>1.78E-07</td>
</tr>
<tr>
<td>Carbon-14</td>
<td>< 1.36E-11 – 5.02E-08</td>
<td>2.82E-08</td>
<td>NE</td>
<td>2.82E-08</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>5.79E-10 – 1.90E-08</td>
<td>1.03E-08</td>
<td>NE</td>
<td>1.03E-08</td>
</tr>
<tr>
<td>Iodine-129</td>
<td>< 2.85E-10 – 1.58E-09</td>
<td>9.61E-10</td>
<td>NE</td>
<td>9.61E-10</td>
</tr>
<tr>
<td>Potassium-40</td>
<td>< 5.00E-08 – 3.56E-07</td>
<td>1.99E-07</td>
<td>NE</td>
<td>1.99E-07</td>
</tr>
<tr>
<td>Radium-226</td>
<td>< 1.10E-10 – 2.99E-09</td>
<td>1.33E-09</td>
<td>NE</td>
<td>1.33E-09</td>
</tr>
<tr>
<td>Radium-228</td>
<td>< 2.23E-10 – 3.20E-09</td>
<td>2.16E-09</td>
<td>NE</td>
<td>2.16E-09</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>< 2.41E-10 – 6.40E-09</td>
<td>5.90E-09</td>
<td>NE</td>
<td>5.90E-09</td>
</tr>
<tr>
<td>Technetium-99</td>
<td>< 8.21E-10 – 8.61E-09</td>
<td>5.02E-09</td>
<td>NE</td>
<td>5.02E-09</td>
</tr>
<tr>
<td>Total Uranium</td>
<td>< 1.27E-06 – 3.46E-03</td>
<td>1.34E-03</td>
<td>NE</td>
<td>1.34E-03</td>
</tr>
<tr>
<td>Uranium-232</td>
<td>< 1.71E-11 – 3.78E-10</td>
<td>1.38E-10</td>
<td>NE</td>
<td>1.38E-10</td>
</tr>
<tr>
<td>Uranium-233/234</td>
<td>< 3.85E-11 – 1.53E-09</td>
<td>6.24E-10</td>
<td>NE</td>
<td>6.24E-10</td>
</tr>
<tr>
<td>Uranium-235/236</td>
<td>< 1.80E-11 – 1.39E-10</td>
<td>8.07E-11</td>
<td>NE</td>
<td>8.07E-11</td>
</tr>
<tr>
<td>Uranium-238</td>
<td>< 1.32E-11 – 1.26E-09</td>
<td>4.97E-10</td>
<td>NE</td>
<td>4.97E-10</td>
</tr>
</tbody>
</table>

Notes:

- NE - No NYSDEC TOGS 1.1.1 groundwater quality standard has been established for this analyte.
- The data used for the calculation of background values was taken from background wells 301, 401, 706, and 1302 in the sand and gravel unit on the north plateau for samples collected from 1991 through September 2009. The background was set to the upper limit of the 95% confidence interval.
- The GSLs for radiological constituents were set equal to the larger of the background concentrations or the NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
TABLE D-1B

Groundwater Screening Levels for Metals

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Range of Observed Concentrations From Background Monitoring Wells 301, 401, 706, and 1302 (\mu g/L)</th>
<th>Background Groundwater Concentration (\mu g/L)</th>
<th>NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards (\mu g/L)</th>
<th>WVDP Groundwater Screening Levels (GSLs) (\mu g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony, total</td>
<td>0.5 – 19.7</td>
<td>15.1</td>
<td>3</td>
<td>15.1</td>
</tr>
<tr>
<td>Arsenic, total</td>
<td>1.5 – 34.4</td>
<td>20.9</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Barium, total</td>
<td>71.7 – 499</td>
<td>441</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Beryllium, total</td>
<td>0.10 – 2.50</td>
<td>1.85</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cadmium, total</td>
<td>0.30 – 5.30</td>
<td>7.27</td>
<td>5</td>
<td>7.27</td>
</tr>
<tr>
<td>Chromium, total</td>
<td>5 – 66</td>
<td>52.3</td>
<td>50</td>
<td>52.3</td>
</tr>
<tr>
<td>Cobalt, total</td>
<td>2.05 – 60.9</td>
<td>67.8</td>
<td>NE</td>
<td>67.8</td>
</tr>
<tr>
<td>Copper, total</td>
<td>1.4 – 90.5</td>
<td>59.9</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Lead, total</td>
<td>0.5 – 120</td>
<td>42.7</td>
<td>25</td>
<td>42.7</td>
</tr>
<tr>
<td>Mercury, total</td>
<td>0.03 – 0.4</td>
<td>0.263</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Nickel, total</td>
<td>10 – 77.8</td>
<td>59.5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Selenium, total</td>
<td>1.0 – 25.0</td>
<td>10.1</td>
<td>10</td>
<td>10.1</td>
</tr>
<tr>
<td>Silver, total</td>
<td>0.1 – 10</td>
<td>15.5</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Thallium, total</td>
<td>0.3 – 13.1</td>
<td>13.9</td>
<td>0.5</td>
<td>13.9</td>
</tr>
<tr>
<td>Tin, total</td>
<td>5.6 – 3,000</td>
<td>4,083</td>
<td>NE</td>
<td>4,083</td>
</tr>
<tr>
<td>Vanadium, total</td>
<td>0.6 – 73.1</td>
<td>69.6</td>
<td>NE</td>
<td>69.6</td>
</tr>
<tr>
<td>Zinc, total</td>
<td>5.71 – 256</td>
<td>127</td>
<td>2,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

NE - No TOGS 1.1.1 Class GA Groundwater quality standard has been established for this analyte.

a Analytes listed are those identified in the 6 NYCRR Part 373-2 Appendix 33 List.

b Data used for the calculation of background values was taken from wells 301, 401, 706, and 1302 in the S&G unit on the north plateau for samples collected from 1991 to December 2008. The background concentration was set equal to the mean plus two standard deviations (as reported in WVDP-494). Ninety-five percent of measurements are expected to fall below this value. Data were rounded to three significant digits or the closest integer.

c Metals GSLs were set equal to the larger of the background concentration or the TOGS 1.1.1 Class GA Groundwater Quality Standards.

d Elevated chromium and nickel concentrations attributed to well corrosion were noted in wells 301, 401, and 706 over the monitoring period. All results suspected to be affected by corrosion (i.e., all chromium and nickel results for 301 and 401, and all results after May 2004 from 706) were excluded from the background calculation.
TABLE D-1C
Practical Quantitation Limits (PQLs)

<table>
<thead>
<tr>
<th>6 NYCRR² Appendix 33 Volatile Organic Compounds</th>
<th>PQL (µg/L)</th>
<th>Compound</th>
<th>PQL (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>10</td>
<td>cis-1,3-Dichloropropene</td>
<td>5</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>100</td>
<td>Ethyl Benzene</td>
<td>5</td>
</tr>
<tr>
<td>Acrolein</td>
<td>11</td>
<td>Ethyl methacrylate</td>
<td>5</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>5</td>
<td>2-Hexanone</td>
<td>10</td>
</tr>
<tr>
<td>Allyl chloride</td>
<td>5</td>
<td>Isobutyl alcohol</td>
<td>100</td>
</tr>
<tr>
<td>Benzene</td>
<td>5</td>
<td>Methacrylonitrile</td>
<td>5</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>5</td>
<td>Methyl ethyl ketone</td>
<td>10</td>
</tr>
<tr>
<td>Bromoform (methyl bromide)</td>
<td>5</td>
<td>Methyl iodide</td>
<td>5</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>10</td>
<td>Methyl methacrylate</td>
<td>5</td>
</tr>
<tr>
<td>Carbon disulfide</td>
<td>10</td>
<td>4-Methyl-2-pentanone (MIBK)</td>
<td>10</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>5</td>
<td>Methylene bromide</td>
<td>10</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>5</td>
<td>Methylene chloride</td>
<td>5</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>10</td>
<td>Pentachloroethane</td>
<td>5</td>
</tr>
<tr>
<td>Chloroform</td>
<td>5</td>
<td>Propionitrile</td>
<td>50</td>
</tr>
<tr>
<td>Chloromethane (methyl chloride)</td>
<td>10</td>
<td>Styrene</td>
<td>5</td>
</tr>
<tr>
<td>Chloroprene</td>
<td>5</td>
<td>1,1,1,2-Tetrachloroethane</td>
<td>5</td>
</tr>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>5</td>
<td>1,1,2,2-Tetrachloroethane</td>
<td>5</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>5</td>
<td>Tetrachloroethylene</td>
<td>5</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>5</td>
<td>Toluene</td>
<td>5</td>
</tr>
<tr>
<td>trans-1,4-Dichloro-2-butene</td>
<td>5</td>
<td>1,1,1-Trichloroethane (1,1,1-TCA)</td>
<td>5</td>
</tr>
<tr>
<td>1,1-Dichloroethane (1,1-DCA)</td>
<td>5</td>
<td>1,1,2-Trichloroethane (1,1,2-TCA)</td>
<td>5</td>
</tr>
<tr>
<td>1,2-Dichloroethane (1,2-DCA)</td>
<td>5</td>
<td>Trichloroethylene (TCE)</td>
<td>5</td>
</tr>
<tr>
<td>1,1-Dichloroethylene (1,1-DCE)</td>
<td>5</td>
<td>Trichlorofluoromethane</td>
<td>5</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene (1,2-DCE[trans])</td>
<td>5</td>
<td>1,2,3-Trichloropropene</td>
<td>5</td>
</tr>
<tr>
<td>Dichlorodifluoromethane (DCDF Meth)</td>
<td>5</td>
<td>Vinyl acetate</td>
<td>10</td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td>5</td>
<td>Vinyl chloride</td>
<td>10</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>5</td>
<td>Xylene (total)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 NYCRR² Appendix 33 Metals</th>
<th>PQL (µg/L)</th>
<th>Compound</th>
<th>PQL (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum °</td>
<td>200</td>
<td>Manganese °</td>
<td>15</td>
</tr>
<tr>
<td>Antimony</td>
<td>10</td>
<td>Mercury</td>
<td>0.2</td>
</tr>
<tr>
<td>Arsenic</td>
<td>10</td>
<td>Nickel</td>
<td>40</td>
</tr>
<tr>
<td>Barium</td>
<td>200</td>
<td>Selenium</td>
<td>5</td>
</tr>
<tr>
<td>Beryllium</td>
<td>1</td>
<td>Silver</td>
<td>10</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5</td>
<td>Thallium</td>
<td>2</td>
</tr>
<tr>
<td>Chromium</td>
<td>10</td>
<td>Tin</td>
<td>3,000</td>
</tr>
<tr>
<td>Cobalt</td>
<td>50</td>
<td>Vanadium</td>
<td>50</td>
</tr>
<tr>
<td>Copper</td>
<td>25</td>
<td>Zinc</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Specific quantitation limits are highly matrix dependent and may not always be achievable.

° Title 6 of the Official Compilation of Codes, Rules, and Regulations of the State of New York.

° Not a 6 NYCRR Appendix 33 parameter; sampled for the north plateau early warning program.
TABLE D-1C (continued)
Practical Quantitation Limits (PQLs)

<table>
<thead>
<tr>
<th>Compound</th>
<th>PQL (µg/L)</th>
<th>Compound</th>
<th>PQL (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acenaphthene</td>
<td>10</td>
<td>2,4-Dinitrotoluene</td>
<td>10</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>10</td>
<td>2,6-Dinitrotoluene</td>
<td>10</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>10</td>
<td>Diphenylamine</td>
<td>10</td>
</tr>
<tr>
<td>2-Acetylaminofluorene</td>
<td>10</td>
<td>Ethyl methanesulfonate</td>
<td>10</td>
</tr>
<tr>
<td>4-Aminobiphenyl</td>
<td>10</td>
<td>Famphur</td>
<td>10</td>
</tr>
<tr>
<td>Analine</td>
<td>10</td>
<td>Fluoranthene</td>
<td>10</td>
</tr>
<tr>
<td>Anthracene</td>
<td>10</td>
<td>Fluorene</td>
<td>10</td>
</tr>
<tr>
<td>Aramite</td>
<td>10</td>
<td>Hexachlorobenzene</td>
<td>10</td>
</tr>
<tr>
<td>Benzo[a]anthracene</td>
<td>10</td>
<td>Hexachlorobutadiene</td>
<td>10</td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>10</td>
<td>Hexachlorocyclopentadiene</td>
<td>10</td>
</tr>
<tr>
<td>Benzo[b]fluoranthene</td>
<td>10</td>
<td>Hexachloroethane</td>
<td>10</td>
</tr>
<tr>
<td>Benzo[ghi]perylene</td>
<td>10</td>
<td>Hexachlorophene</td>
<td>10</td>
</tr>
<tr>
<td>Benzo[k]fluoranthene</td>
<td>10</td>
<td>Hexachloropropene</td>
<td>10</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>10</td>
<td>Indeno(1,2,3,-cd)pyrene</td>
<td>10</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>10</td>
<td>Isodrin</td>
<td>10</td>
</tr>
<tr>
<td>Bis(2-chloroethoxy)methane</td>
<td>10</td>
<td>Isophorone</td>
<td>10</td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl)ether</td>
<td>10</td>
<td>Isosafrole</td>
<td>10</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>10</td>
<td>Kepone</td>
<td>10</td>
</tr>
<tr>
<td>4-Bromophenyl phenyl ether</td>
<td>10</td>
<td>Methapyrile</td>
<td>10</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>10</td>
<td>Methyl methanesulfonate</td>
<td>10</td>
</tr>
<tr>
<td>Chlorobenzilate</td>
<td>10</td>
<td>3-Methylcholanthrene</td>
<td>10</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>10</td>
<td>2-Methylnaphthalene</td>
<td>10</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>10</td>
<td>1,4-Naphthoquinone</td>
<td>10</td>
</tr>
<tr>
<td>4-Chlorophenyl phenyl ether</td>
<td>10</td>
<td>1-Naphthylamine</td>
<td>10</td>
</tr>
<tr>
<td>Chryosene</td>
<td>10</td>
<td>2-Naphthylamine</td>
<td>10</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>10</td>
<td>Nitrobenzene</td>
<td>10</td>
</tr>
<tr>
<td>Di-n-octyl phthalate</td>
<td>10</td>
<td>5-Nitro-o-toluidine</td>
<td>10</td>
</tr>
<tr>
<td>Diallate</td>
<td>10</td>
<td>4-Nitroquinoline 1-oxide</td>
<td>10</td>
</tr>
<tr>
<td>Dibenzo[a,h]anthracine</td>
<td>10</td>
<td>N-Nitrosodi-n-butylamine</td>
<td>10</td>
</tr>
<tr>
<td>Dibenzo[fluoruran]</td>
<td>10</td>
<td>N-Nitrosodiethylamine</td>
<td>10</td>
</tr>
<tr>
<td>3,3-Dichlorobenzidine</td>
<td>10</td>
<td>N-Nitrosodimethylamine</td>
<td>10</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>10</td>
<td>N-Nitroso-di-n-propylamine</td>
<td>10</td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td>10</td>
<td>N-Nitrosodiphenylamine</td>
<td>10</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>10</td>
<td>N-Nitrosomethylethylamine</td>
<td>10</td>
</tr>
<tr>
<td>Dimethoate</td>
<td>10</td>
<td>N-Nitrosomorpholine</td>
<td>10</td>
</tr>
<tr>
<td>7,12-Dimethylbenzo[a]anthracene</td>
<td>10</td>
<td>N-Nitrosopiperidene</td>
<td>10</td>
</tr>
<tr>
<td>3,3-Dimethylbenzidine</td>
<td>20</td>
<td>N-Nitrosopyrrolidin</td>
<td>10</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>10</td>
<td>Naphthalene</td>
<td>10</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>10</td>
<td>0,0,0-Triethyl phosphorothioate</td>
<td>10</td>
</tr>
<tr>
<td>4,6-Dinitro-o-cresol</td>
<td>25</td>
<td>O,O-Diethyl O-2-pyrazinylphosphorothioate</td>
<td>10</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Specific quantitation limits are highly matrix dependent and may not always be achievable.

a Title 6 of the Official Compilation of Codes, Rules, and Regulations of the State of New York.
TABLE D-1C (concluded)
Practical Quantitation Limits (PQLs)

<table>
<thead>
<tr>
<th>Compound</th>
<th>PQL (µg/L)</th>
<th>Compound</th>
<th>PQL (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-(Dimethylamino)azobenzene</td>
<td>10</td>
<td>2,3,4,6-Tetrachlorophenol</td>
<td>10</td>
</tr>
<tr>
<td>p-Chloroaniline</td>
<td>10</td>
<td>Tetraethyl dithiopyrophosphate</td>
<td>10</td>
</tr>
<tr>
<td>p-Chloro-m-cresol</td>
<td>10</td>
<td>1,2,4-Trichlorobenzene</td>
<td>10</td>
</tr>
<tr>
<td>p-Cresol</td>
<td>10</td>
<td>2,4,5-Trichlorophenol</td>
<td>25</td>
</tr>
<tr>
<td>p-Dichlorobenzene</td>
<td>10</td>
<td>2,4,6-Trichlorophenol</td>
<td>10</td>
</tr>
<tr>
<td>p-Nitroaniline</td>
<td>25</td>
<td>alpha,alpha-Dimethylphenethylamine</td>
<td>50</td>
</tr>
<tr>
<td>p-Nitrophenol</td>
<td>25</td>
<td>m-Cresol</td>
<td>10</td>
</tr>
<tr>
<td>p-Phenylenediamine</td>
<td>10</td>
<td>m-Dichlorobenzene</td>
<td>10</td>
</tr>
<tr>
<td>Parathion</td>
<td>10</td>
<td>m-Dinitrobenzene</td>
<td>10</td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>10</td>
<td>m-Nitroanaline</td>
<td>25</td>
</tr>
<tr>
<td>Pentachloronitrobenzene</td>
<td>10</td>
<td>o-Cresol</td>
<td>10</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>25</td>
<td>o-Dichlorobenzene</td>
<td>10</td>
</tr>
<tr>
<td>Phenacetin</td>
<td>10</td>
<td>o-Nitroaniline</td>
<td>25</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>10</td>
<td>o-Nitrophenol</td>
<td>10</td>
</tr>
<tr>
<td>Phenol</td>
<td>10</td>
<td>o-Toluidine</td>
<td>10</td>
</tr>
<tr>
<td>Pronamide</td>
<td>10</td>
<td>sym-Trinitrobenzene</td>
<td>10</td>
</tr>
<tr>
<td>Pyrene</td>
<td>10</td>
<td>2-Picoline</td>
<td>10</td>
</tr>
<tr>
<td>Safrole</td>
<td>10</td>
<td>Pyridine</td>
<td>10</td>
</tr>
<tr>
<td>1,2,4,5-Tetrachlorobenzene</td>
<td>10</td>
<td>1,4-Dioxane</td>
<td>10</td>
</tr>
</tbody>
</table>

Other Organic Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>PQL (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-Dichloroethylene (Total)</td>
<td>5</td>
</tr>
<tr>
<td>N-Dodecane</td>
<td>60</td>
</tr>
<tr>
<td>Tributyl phosphate</td>
<td>10</td>
</tr>
</tbody>
</table>

Note: Specific quantitation limits are highly matrix dependent and may not always be achievable.

Title 6 of the Official Compilation of Codes, Rules, and Regulations of the State of New York.
APPENDIX D-2

Groundwater Monitoring Data

TABLE D-2A

2014 Indicator Results From the Sand and Gravel Unit

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@25°C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>UP</td>
<td>Mar-14</td>
<td>6.60</td>
<td>2563</td>
<td>1.25±3.31E-09</td>
<td>1.00±0.35E-08</td>
<td>0.11±1.03E-07</td>
</tr>
<tr>
<td>301</td>
<td>UP</td>
<td>Jun-14</td>
<td>6.70</td>
<td>2794</td>
<td>-3.69±6.68E-09</td>
<td>5.93±4.94E-09</td>
<td>0.47±9.80E-08</td>
</tr>
<tr>
<td>301</td>
<td>UP</td>
<td>Sep-14</td>
<td>6.33</td>
<td>3232</td>
<td>-1.08±0.65E-08</td>
<td>1.00±0.39E-08</td>
<td>3.11±8.68E-08</td>
</tr>
<tr>
<td>301</td>
<td>UP</td>
<td>Dec-14</td>
<td>6.66</td>
<td>2556</td>
<td>-3.58±5.86E-09</td>
<td>7.37±4.94E-09</td>
<td>2.02±9.76E-08</td>
</tr>
<tr>
<td>302</td>
<td>UP</td>
<td>Dec-14</td>
<td>6.83</td>
<td>5587</td>
<td>-4.94±8.72E-09</td>
<td>2.27±9.26E-09</td>
<td>-0.54±9.70E-08</td>
</tr>
<tr>
<td>401</td>
<td>UP</td>
<td>Mar-14</td>
<td>7.40</td>
<td>4060</td>
<td>-1.29±0.98E-08</td>
<td>2.25±9.00E-09</td>
<td>0.45±1.07E-07</td>
</tr>
<tr>
<td>401</td>
<td>UP</td>
<td>Jun-14</td>
<td>7.10</td>
<td>2975</td>
<td>-5.24±6.33E-09</td>
<td>5.48±6.01E-09</td>
<td>-0.41±9.80E-08</td>
</tr>
<tr>
<td>401</td>
<td>UP</td>
<td>Sep-14</td>
<td>6.70</td>
<td>3281</td>
<td>-1.15±8.74E-09</td>
<td>6.83±7.34E-09</td>
<td>8.99±9.38E-08</td>
</tr>
<tr>
<td>401</td>
<td>UP</td>
<td>Dec-14</td>
<td>7.10</td>
<td>4128</td>
<td>1.28±1.10E-08</td>
<td>8.53±8.13E-09</td>
<td>1.16±1.04E-07</td>
</tr>
<tr>
<td>402</td>
<td>UP</td>
<td>Jun-14</td>
<td>7.03</td>
<td>5654</td>
<td>6.86±6.61E-09</td>
<td>-1.53±7.93E-09</td>
<td>-2.96±9.72E-08</td>
</tr>
<tr>
<td>402</td>
<td>UP</td>
<td>Dec-14</td>
<td>7.03</td>
<td>5979</td>
<td>7.91±8.20E-09</td>
<td>2.60±7.09E-09</td>
<td>2.94±9.61E-08</td>
</tr>
<tr>
<td>403</td>
<td>UP</td>
<td>Jun-14</td>
<td>6.74</td>
<td>3034</td>
<td>-1.79±3.12E-09</td>
<td>-0.62±5.07E-09</td>
<td>-6.23±9.52E-08</td>
</tr>
<tr>
<td>403</td>
<td>UP</td>
<td>Dec-14</td>
<td>6.80</td>
<td>2622</td>
<td>2.70±4.90E-09</td>
<td>8.58±4.63E-09</td>
<td>-0.37±7.38E-08</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Mar-14</td>
<td>7.22</td>
<td>884</td>
<td>-3.90±2.77E-09</td>
<td>6.11±1.74E-09</td>
<td>2.24±9.50E-08</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Jun-14</td>
<td>6.96</td>
<td>1098</td>
<td>0.55±3.02E-09</td>
<td>8.12±2.40E-09</td>
<td>5.00±9.96E-08</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Sep-14</td>
<td>6.58</td>
<td>1117</td>
<td>-4.17±3.09E-09</td>
<td>8.27±2.80E-09</td>
<td>9.13±9.53E-08</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Dec-14</td>
<td>6.98</td>
<td>838</td>
<td>2.66±2.53E-09</td>
<td>1.36±0.26E-08</td>
<td>1.62±7.46E-08</td>
</tr>
<tr>
<td>1302</td>
<td>UP</td>
<td>Dec-14</td>
<td>6.89</td>
<td>728</td>
<td>1.60±1.47E-09</td>
<td>0.49±1.27E-09</td>
<td>-0.79±9.77E-08</td>
</tr>
<tr>
<td>1304</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.13</td>
<td>2688</td>
<td>-1.15±4.79E-09</td>
<td>-0.17±3.76E-09</td>
<td>-5.75±7.92E-08</td>
</tr>
<tr>
<td>1304</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>6.83</td>
<td>4250</td>
<td>-6.86±7.23E-09</td>
<td>-2.96±8.72E-09</td>
<td>1.39±5.55E-08</td>
</tr>
<tr>
<td>1304</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>6.81</td>
<td>3070</td>
<td>7.48±9.56E-09</td>
<td>1.20±0.58E-08</td>
<td>7.08±9.37E-08</td>
</tr>
<tr>
<td>1304</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.15</td>
<td>2331</td>
<td>-1.43±6.67E-09</td>
<td>1.31±5.38E-09</td>
<td>0.58±1.05E-07</td>
</tr>
</tbody>
</table>

NA - Not applicable.
SU - Standard units.

a Hydraulic position is relative to other wells within the same hydrogeologic unit.

b The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (see Table D-1A).
Table D-2A (continued)

2014 Indicator Results From the Sand and Gravel Unit

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>103 DOWN</td>
<td>Mar-14</td>
<td>7.57</td>
<td>3960</td>
<td>-1.58±7.49E-09</td>
<td>9.32±0.81E-08</td>
<td>0.01±1.04E-07</td>
<td></td>
</tr>
<tr>
<td>103 DOWN</td>
<td>Jun-14</td>
<td>7.83</td>
<td>4038</td>
<td>-6.55±5.65E-09</td>
<td>6.83±0.80E-08</td>
<td>4.14±9.96E-08</td>
<td></td>
</tr>
<tr>
<td>103 DOWN</td>
<td>Sep-14</td>
<td>7.73</td>
<td>2846</td>
<td>-0.79±4.45E-09</td>
<td>5.84±0.66E-08</td>
<td>1.02±9.46E-07</td>
<td></td>
</tr>
<tr>
<td>103 DOWN</td>
<td>Dec-14</td>
<td>7.98</td>
<td>2141</td>
<td>4.71±4.94E-09</td>
<td>3.43±0.56E-08</td>
<td>1.02±7.99E-08</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 DOWN</td>
<td>Mar-14</td>
<td>6.99</td>
<td>1933</td>
<td>-0.49±3.38E-09</td>
<td>6.06±0.01E-05</td>
<td>1.30±8.2E-07</td>
<td></td>
</tr>
<tr>
<td>104 DOWN</td>
<td>Jun-14</td>
<td>7.06</td>
<td>2126</td>
<td>-5.37±4.17E-09</td>
<td>6.49±0.01E-05</td>
<td>2.26±9.7E-07</td>
<td></td>
</tr>
<tr>
<td>104 DOWN</td>
<td>Sep-14</td>
<td>6.91</td>
<td>2169</td>
<td>2.36±4.66E-09</td>
<td>7.59±0.01E-05</td>
<td>1.85±1.06E-07</td>
<td></td>
</tr>
<tr>
<td>104 DOWN</td>
<td>Dec-14</td>
<td>7.18</td>
<td>2172</td>
<td>-3.86±5.13E-09</td>
<td>7.39±0.01E-05</td>
<td>1.64±8.86E-07</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 DOWN</td>
<td>Dec-14</td>
<td>6.46</td>
<td>896</td>
<td>9.51±4.06E-09</td>
<td>4.82±0.03E-06</td>
<td>6.5±7.81E-08</td>
<td></td>
</tr>
<tr>
<td>205 DOWN</td>
<td>Jun-14</td>
<td>7.02</td>
<td>4279</td>
<td>6.45±9.16E-09</td>
<td>2.16±0.73E-08</td>
<td>5.31±6.04E-08</td>
<td></td>
</tr>
<tr>
<td>205 DOWN</td>
<td>Dec-14</td>
<td>7.20</td>
<td>4048</td>
<td>1.07±5.64E-09</td>
<td>2.21±0.68E-08</td>
<td>1.22±1.03E-07</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>406 DOWN</td>
<td>Mar-14</td>
<td>7.03</td>
<td>1366</td>
<td>-1.37±2.41E-09</td>
<td>1.06±0.29E-08</td>
<td>0.06±1.05E-07</td>
<td></td>
</tr>
<tr>
<td>406 DOWN</td>
<td>Jun-14</td>
<td>7.28</td>
<td>982</td>
<td>3.78±2.46E-09</td>
<td>1.01±0.20E-08</td>
<td>3.1±9.83E-08</td>
<td></td>
</tr>
<tr>
<td>406 DOWN</td>
<td>Sep-14</td>
<td>7.35</td>
<td>836</td>
<td>1.85±1.96E-09</td>
<td>7.46±2.01E-09</td>
<td>1.04±8.0E-07</td>
<td></td>
</tr>
<tr>
<td>406 DOWN</td>
<td>Dec-14</td>
<td>7.02</td>
<td>991</td>
<td>2.56±2.64E-09</td>
<td>8.95±2.10E-09</td>
<td>0.48±1.02E-07</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>408 DOWN</td>
<td>Mar-14</td>
<td>7.21</td>
<td>3784</td>
<td>-1.35±0.83E-08</td>
<td>2.29±0.01E-04</td>
<td>6.05±7.45E-08</td>
<td></td>
</tr>
<tr>
<td>408 DOWN</td>
<td>Jun-14</td>
<td>7.17</td>
<td>4319</td>
<td>0.75±1.13E-08</td>
<td>1.97±0.01E-04</td>
<td>9.84±9.21E-08</td>
<td></td>
</tr>
<tr>
<td>408 DOWN</td>
<td>Sep-14</td>
<td>7.27</td>
<td>4248</td>
<td>0.48±1.14E-08</td>
<td>2.44±0.01E-04</td>
<td>9.84±7.95E-08</td>
<td></td>
</tr>
<tr>
<td>408 DOWN</td>
<td>Dec-14</td>
<td>7.46</td>
<td>4082</td>
<td>2.56±8.43E-09</td>
<td>1.90±0.01E-04</td>
<td>0.48±1.02E-07</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>501 DOWN</td>
<td>Mar-14</td>
<td>7.37</td>
<td>2862</td>
<td>-1.08±0.72E-08</td>
<td>9.06±0.02E-05</td>
<td>1.63±7.03E-08</td>
<td></td>
</tr>
<tr>
<td>501 DOWN</td>
<td>Jun-14</td>
<td>7.34</td>
<td>3138</td>
<td>2.93±5.00E-09</td>
<td>5.39±0.01E-05</td>
<td>1.13±9.02E-07</td>
<td></td>
</tr>
<tr>
<td>501 DOWN</td>
<td>Sep-14</td>
<td>7.27</td>
<td>3530</td>
<td>-0.27±1.18E-08</td>
<td>1.12±0.01E-04</td>
<td>1.18±8.1E-07</td>
<td></td>
</tr>
<tr>
<td>501 DOWN</td>
<td>Dec-14</td>
<td>7.50</td>
<td>3344</td>
<td>0.33±5.16E-09</td>
<td>9.08±0.02E-05</td>
<td>4.15±9.98E-08</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>502 DOWN</td>
<td>Mar-14</td>
<td>7.36</td>
<td>2594</td>
<td>-1.96±3.31E-09</td>
<td>8.42±0.01E-05</td>
<td>1.27±8.4E-07</td>
<td></td>
</tr>
<tr>
<td>502 DOWN</td>
<td>Jun-14</td>
<td>7.28</td>
<td>2882</td>
<td>-5.16±5.84E-09</td>
<td>9.37±0.01E-05</td>
<td>1.36±9.04E-07</td>
<td></td>
</tr>
<tr>
<td>502 DOWN</td>
<td>Sep-14</td>
<td>7.33</td>
<td>2792</td>
<td>-5.92±9.13E-09</td>
<td>1.08±0.01E-04</td>
<td>3.5±7.35E-08</td>
<td></td>
</tr>
<tr>
<td>502 DOWN</td>
<td>Dec-14</td>
<td>7.42</td>
<td>3098</td>
<td>1.30±0.95E-08</td>
<td>9.41±0.02E-05</td>
<td>0.34±1.06E-07</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>602A DOWN</td>
<td>Jun-14</td>
<td>6.73</td>
<td>822</td>
<td>-1.03±1.68E-09</td>
<td>6.98±1.96E-09</td>
<td>2.1±1.05E-07</td>
<td></td>
</tr>
<tr>
<td>602A DOWN</td>
<td>Dec-14</td>
<td>6.94</td>
<td>788</td>
<td>-0.42±2.13E-09</td>
<td>8.94±1.90E-09</td>
<td>1.77±9.89E-07</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bolding indicates radiological concentration that exceeds the GSL.

NA - Not applicable.

SU - Standard units.

* Hydrualic position is relative to other wells within the same hydrogeologic unit.

* The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).
TABLE D-2A (continued)
2014 Indicator Results From the Sand and Gravel Unit

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmos/cm@ 25 ºC</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>604</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>6.33</td>
<td>1610</td>
<td>-1.88±4.45E-09</td>
<td>4.71±3.45E-09</td>
<td>6.00±6.03E-08</td>
</tr>
<tr>
<td>604</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>6.41</td>
<td>1780</td>
<td>4.54±5.24E-09</td>
<td>7.56±3.40E-09</td>
<td>6.38±7.87E-08</td>
</tr>
<tr>
<td>8605</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>6.93</td>
<td>895</td>
<td>1.00±0.40E-08</td>
<td>6.41±0.03E-06</td>
<td>7.42±8.13E-08</td>
</tr>
<tr>
<td>8605</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>6.73</td>
<td>816</td>
<td>1.05±0.28E-08</td>
<td>5.79±0.03E-06</td>
<td>9.60±9.14E-08</td>
</tr>
<tr>
<td>8605</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>6.65</td>
<td>2231</td>
<td>1.89±0.72E-08</td>
<td>4.80±0.04E-06</td>
<td>8.44±7.68E-08</td>
</tr>
<tr>
<td>8605</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>6.82</td>
<td>906</td>
<td>2.57±0.66E-08</td>
<td>7.46±0.04E-06</td>
<td>0.56±1.20E-07</td>
</tr>
<tr>
<td>8607</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>6.81</td>
<td>2650</td>
<td>-5.98±7.21E-09</td>
<td>4.63±0.56E-08</td>
<td>-0.74±8.28E-08</td>
</tr>
<tr>
<td>8607</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>6.79</td>
<td>2150</td>
<td>-4.76±4.37E-09</td>
<td>5.15±0.46E-08</td>
<td>6.85±8.00E-08</td>
</tr>
<tr>
<td>8607</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>6.72</td>
<td>1478</td>
<td>-4.35±2.95E-09</td>
<td>3.65±0.36E-08</td>
<td>2.18±7.07E-08</td>
</tr>
<tr>
<td>8607</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>6.54</td>
<td>1304</td>
<td>3.23±4.03E-09</td>
<td>3.25±0.40E-08</td>
<td>1.25±1.04E-07</td>
</tr>
<tr>
<td>8609</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.16</td>
<td>2278</td>
<td>1.08±4.24E-09</td>
<td>9.65±0.16E-07</td>
<td>8.23±8.09E-08</td>
</tr>
<tr>
<td>8609</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.07</td>
<td>2410</td>
<td>-0.63±4.69E-09</td>
<td>1.08±0.02E-06</td>
<td>1.31±0.93E-07</td>
</tr>
<tr>
<td>8609</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>6.73</td>
<td>2454</td>
<td>-0.93±5.55E-09</td>
<td>1.26±0.02E-06</td>
<td>8.32±7.70E-08</td>
</tr>
<tr>
<td>8609</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.15</td>
<td>2538</td>
<td>1.36±6.56E-09</td>
<td>1.29±0.02E-06</td>
<td>0.81±1.05E-07</td>
</tr>
<tr>
<td>105</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.25</td>
<td>2050</td>
<td>-4.32±3.49E-09</td>
<td>6.34±0.01E-05</td>
<td>1.32±0.85E-07</td>
</tr>
<tr>
<td>105</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.16</td>
<td>2344</td>
<td>-7.10±6.24E-09</td>
<td>5.35±0.01E-05</td>
<td>1.92±0.95E-07</td>
</tr>
<tr>
<td>105</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>6.95</td>
<td>2400</td>
<td>2.65±6.27E-09</td>
<td>6.29±0.01E-05</td>
<td>1.60±0.84E-07</td>
</tr>
<tr>
<td>105</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.26</td>
<td>2500</td>
<td>-3.77±5.97E-09</td>
<td>6.44±0.01E-05</td>
<td>1.59±0.85E-07</td>
</tr>
<tr>
<td>106</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>6.69</td>
<td>1744</td>
<td>1.50±2.57E-09</td>
<td>1.69±0.02E-06</td>
<td>1.53±1.11E-07</td>
</tr>
<tr>
<td>106</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>6.83</td>
<td>1772</td>
<td>3.05±8.06E-09</td>
<td>2.03±0.02E-06</td>
<td>4.32±1.06E-07</td>
</tr>
<tr>
<td>106</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>6.62</td>
<td>1688</td>
<td>-1.78±2.97E-09</td>
<td>1.62±0.02E-06</td>
<td>8.68±1.67E-07</td>
</tr>
<tr>
<td>106</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>6.83</td>
<td>1670</td>
<td>0.37±2.68E-09</td>
<td>1.52±0.02E-06</td>
<td>5.73±1.15E-07</td>
</tr>
<tr>
<td>116</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.13</td>
<td>2425</td>
<td>0.50±3.84E-09</td>
<td>2.29±0.01E-05</td>
<td>9.47±9.16E-08</td>
</tr>
<tr>
<td>116</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.09</td>
<td>2540</td>
<td>-5.19±4.76E-09</td>
<td>2.59±0.01E-05</td>
<td>9.96±8.07E-08</td>
</tr>
<tr>
<td>605</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>6.73</td>
<td>1254</td>
<td>-0.13±3.04E-09</td>
<td>2.66±0.22E-08</td>
<td>8.07±8.62E-08</td>
</tr>
<tr>
<td>605</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>6.27</td>
<td>975</td>
<td>-1.87±1.66E-09</td>
<td>2.59±0.21E-08</td>
<td>-2.92±7.02E-08</td>
</tr>
</tbody>
</table>

Note: Bolding indicates radiological concentration that exceeds the GSL.
NA - Not applicable.
SU - Standard units.
* Hydraulic position is relative to other wells within the same hydrogeologic unit.
* The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).
TABLE D-2A (continued)
2014 Indicator Results From the Sand and Gravel Unit

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm @ 25°C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
<td>DOWN Mar-14</td>
<td>6.61</td>
<td>2321</td>
<td>-0.91±5.78E-09</td>
<td>1.25±0.01E-05</td>
<td>3.31±7.30E-08</td>
<td></td>
</tr>
<tr>
<td>802</td>
<td>DOWN Jun-14</td>
<td>6.64</td>
<td>2291</td>
<td>-6.88±4.52E-09</td>
<td>7.39±0.04E-06</td>
<td>8.39±9.09E-08</td>
<td></td>
</tr>
<tr>
<td>803</td>
<td>DOWN Sep-14</td>
<td>6.34</td>
<td>2188</td>
<td>0.22±4.63E-09</td>
<td>6.88±0.04E-06</td>
<td>0.5±8.17E-08</td>
<td></td>
</tr>
<tr>
<td>804</td>
<td>DOWN Dec-14</td>
<td>6.63</td>
<td>1784</td>
<td>2.01±3.80E-09</td>
<td>5.78±0.03E-06</td>
<td>0.5±1.11E-07</td>
<td></td>
</tr>
<tr>
<td>805</td>
<td>DOWN Mar-14</td>
<td>6.94</td>
<td>418</td>
<td>-0.73±1.12E-09</td>
<td>1.98±0.04E-07</td>
<td>0.69±7.08E-08</td>
<td></td>
</tr>
<tr>
<td>806</td>
<td>DOWN Jun-14</td>
<td>6.63</td>
<td>284</td>
<td>-0.51±1.09E-09</td>
<td>1.39±0.03E-07</td>
<td>9.37±9.12E-08</td>
<td></td>
</tr>
<tr>
<td>807</td>
<td>DOWN Sep-14</td>
<td>6.80</td>
<td>1452</td>
<td>1.6±3.05E-09</td>
<td>1.39±0.02E-06</td>
<td>1.73±8.36E-08</td>
<td></td>
</tr>
<tr>
<td>808</td>
<td>DOWN Dec-14</td>
<td>7.05</td>
<td>1776</td>
<td>1.88±3.46E-09</td>
<td>1.64±0.02E-06</td>
<td>0.27±1.08E-07</td>
<td></td>
</tr>
<tr>
<td>809</td>
<td>DOWN Mar-14</td>
<td>7.18</td>
<td>2382</td>
<td>-5.94±5.52E-09</td>
<td>2.09±0.02E-06</td>
<td>1.16±0.86E-07</td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>DOWN Jun-14</td>
<td>7.11</td>
<td>2434</td>
<td>-2.26±4.81E-09</td>
<td>1.88±0.02E-06</td>
<td>5.19±9.77E-08</td>
<td></td>
</tr>
<tr>
<td>811</td>
<td>DOWN Sep-14</td>
<td>7.12</td>
<td>2566</td>
<td>4.58±6.54E-09</td>
<td>2.46±0.03E-06</td>
<td>1.13±1.05E-07</td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>DOWN Dec-14</td>
<td>7.28</td>
<td>2726</td>
<td>0.39±0.07E-09</td>
<td>2.60±0.03E-06</td>
<td>0.36±1.09E-07</td>
<td></td>
</tr>
<tr>
<td>813</td>
<td>DOWN Mar-14</td>
<td>7.27</td>
<td>1719</td>
<td>4.36±5.03E-09</td>
<td>3.48±0.08E-07</td>
<td>1.12±0.94E-07</td>
<td></td>
</tr>
<tr>
<td>814</td>
<td>DOWN Jun-14</td>
<td>6.60</td>
<td>1852</td>
<td>-6.83±4.98E-09</td>
<td>3.43±0.08E-07</td>
<td>5.65±7.91E-08</td>
<td></td>
</tr>
<tr>
<td>815</td>
<td>DOWN Sep-14</td>
<td>6.45</td>
<td>2163</td>
<td>-9.85±6.52E-09</td>
<td>4.15±0.12E-07</td>
<td>1.08±0.95E-07</td>
<td></td>
</tr>
<tr>
<td>816</td>
<td>DOWN Dec-14</td>
<td>6.86</td>
<td>2174</td>
<td>4.41±6.49E-09</td>
<td>4.07±1.26E-07</td>
<td>-0.02±1.02E-07</td>
<td></td>
</tr>
<tr>
<td>8603</td>
<td>DOWN Jun-14</td>
<td>7.24</td>
<td>2392</td>
<td>-0.22±3.51E-09</td>
<td>5.80±0.01E-05</td>
<td>2.15±0.97E-07</td>
<td></td>
</tr>
<tr>
<td>8604</td>
<td>DOWN Dec-14</td>
<td>7.31</td>
<td>2554</td>
<td>-0.5±6.61E-09</td>
<td>7.54±0.01E-05</td>
<td>1.82±0.81E-07</td>
<td></td>
</tr>
<tr>
<td>8612</td>
<td>DOWN Mar-14</td>
<td>7.10</td>
<td>2183</td>
<td>-1.24±0.56E-08</td>
<td>1.16±0.41E-08</td>
<td>3.76±8.94E-08</td>
<td></td>
</tr>
<tr>
<td>8613</td>
<td>DOWN Jun-14</td>
<td>7.15</td>
<td>2210</td>
<td>-1.72±5.08E-09</td>
<td>8.53±3.64E-09</td>
<td>9.13±6.51E-08</td>
<td></td>
</tr>
<tr>
<td>8614</td>
<td>DOWN Sep-14</td>
<td>7.10</td>
<td>2212</td>
<td>-2.45±7.16E-09</td>
<td>1.67±0.56E-08</td>
<td>1.33±1.05E-07</td>
<td></td>
</tr>
<tr>
<td>8615</td>
<td>DOWN Dec-14</td>
<td>7.31</td>
<td>2328</td>
<td>2.03±4.78E-09</td>
<td>1.94±0.49E-08</td>
<td>-0.28±1.02E-07</td>
<td></td>
</tr>
<tr>
<td>GSEEP</td>
<td>DOWN Mar-14</td>
<td>7.21</td>
<td>1637</td>
<td>3.20±3.51E-09</td>
<td>2.7±0.07E-07</td>
<td>2.34±1.10E-07</td>
<td></td>
</tr>
<tr>
<td>GSEEP</td>
<td>DOWN Jun-14</td>
<td>6.82</td>
<td>1902</td>
<td>-2.90±3.22E-09</td>
<td>3.20±0.08E-07</td>
<td>2.72±1.13E-07</td>
<td></td>
</tr>
<tr>
<td>GSEEP</td>
<td>DOWN Sep-14</td>
<td>7.69</td>
<td>1964</td>
<td>-2.52±3.45E-09</td>
<td>3.42±0.08E-07</td>
<td>1.41±0.81E-07</td>
<td></td>
</tr>
<tr>
<td>GSEEP</td>
<td>DOWN Dec-14</td>
<td>6.91</td>
<td>1739</td>
<td>0.54±3.54E-09</td>
<td>3.10±0.08E-07</td>
<td>2.42±1.08E-07</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bolding indicates radiological concentration that exceeds the GSL.
NA - Not applicable.
SU - Standard units.

a Hydraulic position relative to other wells within the same hydrogeologic unit.

b The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).
TABLE D-2A (concluded)

2014 Indicator Results From the Sand and Gravel Unit

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm @ 25°C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Groundwater Screening Levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP04</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>NS</td>
<td>NS</td>
<td>1.76±6.92E-09</td>
<td>7.58±0.13E-07</td>
<td>0.73±1.03E-07</td>
</tr>
<tr>
<td>SP04</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>NS</td>
<td>NS</td>
<td>1.85±3.12E-09</td>
<td>6.00±0.11E-07</td>
<td>1.52±0.88E-07</td>
</tr>
<tr>
<td>SP06</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>NS</td>
<td>NS</td>
<td>-1.88±4.09E-09</td>
<td>3.11±0.08E-07</td>
<td>8.95±8.71E-08</td>
</tr>
<tr>
<td>SP06</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>NS</td>
<td>NS</td>
<td>-0.16±2.13E-09</td>
<td>1.39±0.05E-07</td>
<td>9.37±8.29E-08</td>
</tr>
<tr>
<td>SP11</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>NS</td>
<td>NS</td>
<td>2.15±4.69E-09</td>
<td>1.12±0.02E-06</td>
<td>0.92±1.02E-07</td>
</tr>
<tr>
<td>SP11</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>NS</td>
<td>NS</td>
<td>-0.25±4.91E-09</td>
<td>1.45±0.02E-06</td>
<td>3.46±7.66E-08</td>
</tr>
<tr>
<td>SP12</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.23</td>
<td>2100</td>
<td>-3.70±3.39E-09</td>
<td>2.87±0.09E-07</td>
<td>4.61±9.99E-08</td>
</tr>
<tr>
<td>SP12</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.24</td>
<td>2353</td>
<td>3.85±5.09E-09</td>
<td>3.62±0.10E-07</td>
<td>1.61±1.02E-07</td>
</tr>
<tr>
<td>WP-A</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>7.53</td>
<td>138</td>
<td>-7.07±6.76E-10</td>
<td>1.51±0.19E-08</td>
<td>7.82±0.34E-06</td>
</tr>
<tr>
<td>WP-C</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>7.03</td>
<td>1052</td>
<td>-3.54±3.48E-09</td>
<td>2.10±0.07E-07</td>
<td>2.86±0.06E-05</td>
</tr>
<tr>
<td>WP-H</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>6.74</td>
<td>1250</td>
<td>-2.76±3.29E-09</td>
<td>7.47±0.03E-06</td>
<td>5.58±1.14E-07</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.15</td>
<td>4384</td>
<td>0.38±7.41E-09</td>
<td>3.71±0.01E-04</td>
<td>9.52±8.03E-08</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.15</td>
<td>5214</td>
<td>0.00±7.98E-09</td>
<td>3.55±0.01E-04</td>
<td>1.44±0.95E-07</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>7.32</td>
<td>4537</td>
<td>-1.65±1.12E-08</td>
<td>3.24±0.01E-04</td>
<td>1.03±0.79E-07</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.48</td>
<td>4312</td>
<td>-0.24±1.15E-08</td>
<td>3.06±0.01E-04</td>
<td>0.70±1.02E-07</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>6.80</td>
<td>4319</td>
<td>4.90±9.31E-09</td>
<td>6.45±0.01E-04</td>
<td>9.57±8.39E-08</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.09</td>
<td>2902</td>
<td>-8.56±7.48E-09</td>
<td>4.32±0.01E-04</td>
<td>1.53±0.94E-07</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>7.15</td>
<td>3572</td>
<td>-7.09±9.78E-09</td>
<td>3.74±0.01E-04</td>
<td>4.86±7.46E-08</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.21</td>
<td>3312</td>
<td>2.78±8.79E-09</td>
<td>3.66±0.01E-04</td>
<td>0.50±9.84E-08</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.26</td>
<td>3150</td>
<td>-1.02±5.44E-09</td>
<td>3.57±0.01E-04</td>
<td>5.71±1.47E-07</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.26</td>
<td>1646</td>
<td>-1.03±0.72E-08</td>
<td>2.91±0.01E-04</td>
<td>8.49±9.11E-08</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>7.30</td>
<td>2684</td>
<td>-1.02±0.86E-08</td>
<td>2.78±0.01E-04</td>
<td>1.28±0.84E-07</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.41</td>
<td>2859</td>
<td>-1.39±5.97E-09</td>
<td>2.24±0.01E-04</td>
<td>0.57±1.02E-07</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.31</td>
<td>3467</td>
<td>-1.17±0.97E-08</td>
<td>5.05±0.01E-04</td>
<td>1.03±0.80E-07</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.23</td>
<td>3418</td>
<td>0.00±6.93E-09</td>
<td>5.19±0.01E-04</td>
<td>1.25±0.92E-07</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>7.26</td>
<td>3024</td>
<td>3.59±7.25E-09</td>
<td>3.77±0.01E-04</td>
<td>7.33±7.62E-08</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.43</td>
<td>2808</td>
<td>1.50±5.29E-09</td>
<td>3.12±0.01E-04</td>
<td>1.43±1.08E-07</td>
</tr>
</tbody>
</table>

Note: Bolding indicates radiological concentration that exceeds the GSL.
NA - Not applicable.
NS - Not sampled.
SU - Standard units.

* Hydraulic position is relative to other wells within the same hydrogeologic unit.

* The GSLs or radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).
TABLE D-2B
2014 Indicator Results From the Lavery Till-Sand Unit

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position<sup>a</sup></th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm@ 25 ºC</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>204 DOWN</td>
<td>Mar-14</td>
<td>7.47</td>
<td>1984</td>
<td>-1.11±3.96E-09</td>
<td>0.58±3.43E-09</td>
<td>-0.09±1.04E-07</td>
<td></td>
</tr>
<tr>
<td>204 DOWN</td>
<td>Jun-14</td>
<td>7.42</td>
<td>1949</td>
<td>-2.84±4.11E-09</td>
<td>0.30±2.94E-09</td>
<td>6.46±8.46E-08</td>
<td></td>
</tr>
<tr>
<td>204 DOWN</td>
<td>Sep-14</td>
<td>7.42</td>
<td>2022</td>
<td>1.49±4.55E-09</td>
<td>5.26±4.08E-09</td>
<td>9.42±9.55E-08</td>
<td></td>
</tr>
<tr>
<td>204 DOWN</td>
<td>Dec-14</td>
<td>7.55</td>
<td>1978</td>
<td>0.78±5.19E-09</td>
<td>7.32±4.86E-09</td>
<td>1.96±7.52E-08</td>
<td></td>
</tr>
<tr>
<td>206 DOWN</td>
<td>Jun-14</td>
<td>7.30</td>
<td>2154</td>
<td>1.97±6.78E-09</td>
<td>7.07±4.06E-09</td>
<td>2.50±7.70E-08</td>
<td></td>
</tr>
<tr>
<td>206 DOWN</td>
<td>Dec-14</td>
<td>7.47</td>
<td>2176</td>
<td>7.09±5.25E-09</td>
<td>7.22±3.58E-09</td>
<td>4.72±9.71E-08</td>
<td></td>
</tr>
</tbody>
</table>

NA - Not applicable.
SU - Standard units.
^a Hydraulic position is relative to other wells within the same hydrogeologic unit.
^b The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).
Appendix D. Summary of Groundwater Monitoring Data

2014 indicator Results From the Weathered Lavery Till Unit

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>908R</td>
<td>UP</td>
</tr>
<tr>
<td>906</td>
<td>DOWN</td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
</tr>
<tr>
<td>909</td>
<td>DOWN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm @ 25 ºC</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec-14</td>
<td>6.86</td>
<td>1404</td>
<td>4.08±3.98E-09</td>
<td>6.41±2.99E-09</td>
<td>0.07±1.05E-07</td>
</tr>
<tr>
<td>Jun-14</td>
<td>7.28</td>
<td>797</td>
<td>-1.21±1.96E-09</td>
<td>2.97±1.38E-09</td>
<td>6.69±6.19E-08</td>
</tr>
<tr>
<td>Dec-14</td>
<td>7.25</td>
<td>808</td>
<td>8.10±3.31E-09</td>
<td>4.44±1.90E-09</td>
<td>1.72±7.51E-08</td>
</tr>
<tr>
<td>Jun-14</td>
<td>7.52</td>
<td>608</td>
<td>-3.17±2.08E-09</td>
<td>-0.79±1.44E-09</td>
<td>5.34±5.89E-08</td>
</tr>
<tr>
<td>Dec-14</td>
<td>7.58</td>
<td>604</td>
<td>0.84±1.31E-09</td>
<td>1.72±1.37E-09</td>
<td>0.63±1.01E-07</td>
</tr>
<tr>
<td>Jun-14</td>
<td>7.04</td>
<td>678</td>
<td>0.39±1.88E-09</td>
<td>3.45±1.48E-09</td>
<td>5.47±6.31E-08</td>
</tr>
<tr>
<td>Dec-14</td>
<td>7.26</td>
<td>673</td>
<td>3.82±2.58E-09</td>
<td>5.67±1.58E-09</td>
<td>7.26±8.60E-08</td>
</tr>
<tr>
<td>Jun-14</td>
<td>7.24</td>
<td>1362</td>
<td>3.82±3.68E-09</td>
<td>7.46±3.25E-09</td>
<td>8.05±6.29E-08</td>
</tr>
<tr>
<td>Dec-14</td>
<td>7.21</td>
<td>1562</td>
<td>6.62±3.77E-09</td>
<td>6.27±2.91E-09</td>
<td>4.23±7.73E-08</td>
</tr>
<tr>
<td>Mar-14</td>
<td>7.96</td>
<td>708</td>
<td>3.71±2.03E-09</td>
<td>3.51±0.06E-07</td>
<td>1.58±1.11E-07</td>
</tr>
<tr>
<td>Jun-14</td>
<td>7.39</td>
<td>1057</td>
<td>-0.73±1.52E-09</td>
<td>5.82±0.07E-07</td>
<td>1.78±0.92E-07</td>
</tr>
<tr>
<td>Sep-14</td>
<td>7.09</td>
<td>1112</td>
<td>-0.44±1.67E-09</td>
<td>6.85±0.08E-07</td>
<td>1.23±0.84E-07</td>
</tr>
<tr>
<td>Dec-14</td>
<td>7.65</td>
<td>808</td>
<td>3.68±1.70E-09</td>
<td>4.89±0.07E-07</td>
<td>1.58±0.97E-07</td>
</tr>
<tr>
<td>Jun-14</td>
<td>6.71</td>
<td>1405</td>
<td>-2.08±4.34E-09</td>
<td>2.22±0.08E-07</td>
<td>7.12±1.16E-07</td>
</tr>
<tr>
<td>Dec-14</td>
<td>6.38</td>
<td>1540</td>
<td>2.94±5.14E-09</td>
<td>2.91±0.09E-07</td>
<td>7.39±1.34E-07</td>
</tr>
</tbody>
</table>

Note: Bolding indicates radiological concentration that exceeds the GSL.

NA - Not applicable.

SU - Standard units.

Hydraulic position is relative to other wells within the same hydrogeologic unit.

The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).
TABLE D-2D

2014 Indicator Results From the Unweathered Laverly Till

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH SU</th>
<th>Conductivity µmhos/cm @ 25 °C</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Screening Levels</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td>1.50E-08</td>
<td>1.00E-06</td>
<td>1.78E-07</td>
</tr>
<tr>
<td>405</td>
<td>UP</td>
<td>Mar-14</td>
<td>6.65</td>
<td>5033</td>
<td>-1.29±1.00E-08</td>
<td>0.90±7.11E-09</td>
<td>0.33±1.06E-07</td>
</tr>
<tr>
<td>405</td>
<td>UP</td>
<td>Jun-14</td>
<td>7.22</td>
<td>3711</td>
<td>-6.71±6.57E-09</td>
<td>-1.15±7.11E-09</td>
<td>8.29±6.33E-08</td>
</tr>
<tr>
<td>405</td>
<td>UP</td>
<td>Sep-14</td>
<td>7.20</td>
<td>1973</td>
<td>-1.56±4.40E-09</td>
<td>2.70±3.25E-09</td>
<td>1.03±0.97E-07</td>
</tr>
<tr>
<td>405</td>
<td>UP</td>
<td>Dec-14</td>
<td>7.04</td>
<td>1711</td>
<td>-0.63±4.00E-09</td>
<td>4.77±3.11E-09</td>
<td>0.50±1.02E-07</td>
</tr>
<tr>
<td>1303</td>
<td>UP</td>
<td>Mar-14</td>
<td>7.71</td>
<td>290</td>
<td>-5.84±9.53E-10</td>
<td>9.60±8.90E-10</td>
<td>-4.18±8.33E-08</td>
</tr>
<tr>
<td>1303</td>
<td>UP</td>
<td>Jun-14</td>
<td>7.83</td>
<td>334</td>
<td>-1.98±1.62E-09</td>
<td>5.27±5.38E-10</td>
<td>4.70±7.51E-10</td>
</tr>
<tr>
<td>1303</td>
<td>UP</td>
<td>Sep-14</td>
<td>7.67</td>
<td>288</td>
<td>6.49±7.80E-10</td>
<td>5.81±7.80E-10</td>
<td>2.31±7.10E-08</td>
</tr>
<tr>
<td>1303</td>
<td>UP</td>
<td>Dec-14</td>
<td>7.77</td>
<td>329</td>
<td>5.40±8.48E-10</td>
<td>2.68±0.84E-09</td>
<td>-4.10±6.89E-08</td>
</tr>
<tr>
<td>110</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.49</td>
<td>580</td>
<td>-2.00±2.45E-09</td>
<td>0.64±1.87E-09</td>
<td>7.04±1.28E-07</td>
</tr>
<tr>
<td>110</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.43</td>
<td>557</td>
<td>-1.98±1.62E-09</td>
<td>1.20±1.48E-09</td>
<td>6.66±1.08E-07</td>
</tr>
<tr>
<td>110</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>7.40</td>
<td>598</td>
<td>1.55±2.36E-09</td>
<td>3.16±1.66E-09</td>
<td>6.73±1.53E-07</td>
</tr>
<tr>
<td>110</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.19</td>
<td>622</td>
<td>0.38±1.80E-09</td>
<td>2.36±1.57E-09</td>
<td>6.79±1.26E-07</td>
</tr>
<tr>
<td>704</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>6.77</td>
<td>1314</td>
<td>-1.99±3.03E-10</td>
<td>5.94±2.77E-09</td>
<td>4.93±9.21E-08</td>
</tr>
<tr>
<td>704</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>6.58</td>
<td>924</td>
<td>-2.09±4.48E-09</td>
<td>9.46±2.80E-09</td>
<td>7.69±6.18E-08</td>
</tr>
<tr>
<td>704</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>6.69</td>
<td>1296</td>
<td>-1.42±2.30E-09</td>
<td>6.96±2.62E-09</td>
<td>-0.59±6.84E-08</td>
</tr>
<tr>
<td>704</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>6.69</td>
<td>1086</td>
<td>-0.65±3.72E-09</td>
<td>9.84±3.44E-09</td>
<td>1.42±7.34E-08</td>
</tr>
<tr>
<td>707</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>6.83</td>
<td>541</td>
<td>-6.48±8.57E-10</td>
<td>1.99±0.97E-09</td>
<td>9.04±6.32E-08</td>
</tr>
<tr>
<td>707</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>6.62</td>
<td>490</td>
<td>0.58±1.00E-09</td>
<td>2.96±0.98E-09</td>
<td>6.76±9.82E-08</td>
</tr>
<tr>
<td>107</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.83</td>
<td>911</td>
<td>-1.28±2.05E-09</td>
<td>2.22±0.24E-08</td>
<td>1.07±1.08E-07</td>
</tr>
<tr>
<td>107</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.57</td>
<td>902</td>
<td>-0.53±1.80E-09</td>
<td>2.40±0.24E-08</td>
<td>1.57±0.95E-07</td>
</tr>
<tr>
<td>107</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>7.58</td>
<td>781</td>
<td>1.54±1.60E-09</td>
<td>2.56±0.22E-08</td>
<td>1.35±0.98E-07</td>
</tr>
<tr>
<td>107</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.66</td>
<td>677</td>
<td>3.25±2.12E-09</td>
<td>1.50±0.19E-08</td>
<td>0.89±1.05E-07</td>
</tr>
<tr>
<td>108</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.60</td>
<td>588</td>
<td>0.33±1.75E-09</td>
<td>2.74±1.09E-09</td>
<td>2.61±0.80E-07</td>
</tr>
<tr>
<td>108</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.61</td>
<td>619</td>
<td>4.40±1.57E-09</td>
<td>2.39±1.12E-09</td>
<td>3.13±1.10E-07</td>
</tr>
<tr>
<td>409</td>
<td>DOWN</td>
<td>Mar-14</td>
<td>7.93</td>
<td>347</td>
<td>1.18±1.19E-09</td>
<td>1.59±1.05E-09</td>
<td>0.03±1.06E-07</td>
</tr>
<tr>
<td>409</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>8.06</td>
<td>348</td>
<td>-0.19±1.12E-09</td>
<td>1.21±1.00E-09</td>
<td>-2.07±9.81E-08</td>
</tr>
<tr>
<td>409</td>
<td>DOWN</td>
<td>Sep-14</td>
<td>8.12</td>
<td>342</td>
<td>-0.06±1.24E-09</td>
<td>1.94±1.50E-09</td>
<td>1.55±7.14E-08</td>
</tr>
<tr>
<td>409</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>8.05</td>
<td>344</td>
<td>1.27±1.92E-09</td>
<td>1.88±1.66E-09</td>
<td>-4.70±9.64E-08</td>
</tr>
<tr>
<td>910R</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.15</td>
<td>1479</td>
<td>4.94±4.95E-09</td>
<td>6.80±3.47E-09</td>
<td>3.00±5.48E-08</td>
</tr>
<tr>
<td>910R</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.13</td>
<td>1464</td>
<td>9.15±4.17E-09</td>
<td>1.01±0.38E-08</td>
<td>2.98±8.60E-08</td>
</tr>
</tbody>
</table>

Note: Bolding indicates radiological concentration that exceeds the GSL.
NA - Not applicable.
SU - Standard units.
a Hydraulic position is relative to other wells within the same hydrogeologic unit.
b The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).
TABLE D-2E
2014 Indicator Results From the Kent Recessional Sequence

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>pH</th>
<th>SU</th>
<th>Conductivity µmhos/cm@ 25 ºC</th>
<th>Gross Alpha µCi/mL</th>
<th>Gross Beta µCi/mL</th>
<th>Tritium µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Screening Levels</td>
<td>NA</td>
<td>NA</td>
<td>1.50E-08</td>
<td>1.00E-06</td>
<td>1.78E-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>901</td>
<td>UP</td>
<td>Jun-14</td>
<td>7.22</td>
<td>428</td>
<td>-6.47±7.99E-10</td>
<td>1.63±0.93E-09</td>
<td>0.90±5.79E-08</td>
<td></td>
</tr>
<tr>
<td>901</td>
<td>UP</td>
<td>Dec-14</td>
<td>6.99</td>
<td>427</td>
<td>7.47±8.21E-10</td>
<td>2.45±0.79E-09</td>
<td>-8.57±9.40E-08</td>
<td></td>
</tr>
<tr>
<td>902</td>
<td>UP</td>
<td>Jun-14</td>
<td>7.89</td>
<td>450</td>
<td>1.52±1.38E-09</td>
<td>6.06±1.03E-09</td>
<td>2.28±5.91E-08</td>
<td></td>
</tr>
<tr>
<td>902</td>
<td>UP</td>
<td>Dec-14</td>
<td>7.54</td>
<td>441</td>
<td>1.27±0.99E-09</td>
<td>2.47±0.97E-09</td>
<td>2.92±8.39E-08</td>
<td></td>
</tr>
<tr>
<td>1008</td>
<td>UP</td>
<td>Dec-14</td>
<td>7.86</td>
<td>365</td>
<td>-1.48±8.72E-10</td>
<td>1.35±0.96E-09</td>
<td>-0.59±1.01E-07</td>
<td></td>
</tr>
<tr>
<td>903</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.40</td>
<td>969</td>
<td>0.12±2.47E-09</td>
<td>5.88±1.58E-09</td>
<td>1.14±5.97E-08</td>
<td></td>
</tr>
<tr>
<td>903</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.28</td>
<td>947</td>
<td>1.73±1.88E-09</td>
<td>-0.52±1.77E-09</td>
<td>-3.40±7.39E-08</td>
<td></td>
</tr>
<tr>
<td>8610</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.44</td>
<td>1501</td>
<td>-0.86±3.38E-09</td>
<td>1.25±2.98E-09</td>
<td>0.55±5.77E-08</td>
<td></td>
</tr>
<tr>
<td>8610</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.54</td>
<td>1478</td>
<td>2.75±2.81E-09</td>
<td>5.42±2.93E-09</td>
<td>3.02±8.17E-08</td>
<td></td>
</tr>
<tr>
<td>8611</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>7.04</td>
<td>1357</td>
<td>-1.55±2.37E-09</td>
<td>3.71±2.10E-09</td>
<td>1.51±5.97E-08</td>
<td></td>
</tr>
<tr>
<td>8611</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>7.34</td>
<td>1349</td>
<td>-2.73±3.73E-09</td>
<td>2.69±2.36E-09</td>
<td>1.42±0.92E-07</td>
<td></td>
</tr>
</tbody>
</table>

NA - Not applicable.
SU - Standard units.

a Hydraulic position is relative to other wells within the same hydrogeologic unit.

b The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).

###TABLE D-2F
2014 Metals Results for Early Warning Monitoring Well 502

<table>
<thead>
<tr>
<th>Location</th>
<th>Date Collected</th>
<th>Aluminum µg/L</th>
<th>Iron µg/L</th>
<th>Manganese µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>502</td>
<td>Jun-14</td>
<td><200</td>
<td>29,200</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>Dec-14</td>
<td>275</td>
<td>31,000</td>
<td>337</td>
</tr>
</tbody>
</table>
TABLE D-2G

2014 Results for Metals in Groundwater

Compared With WVDP Groundwater Screening Levels

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>Antimony μg/L</th>
<th>Arsenic μg/L</th>
<th>Barium μg/L</th>
<th>Beryllium μg/L</th>
<th>Cadmium μg/L</th>
<th>Chromium μg/L</th>
<th>Cobalt μg/L</th>
<th>Copper μg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>706</td>
<td>UP</td>
<td>Mar-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>56</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Jun-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>34</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>28</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>40</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>1302</td>
<td>UP</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>1304</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>5</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>1304</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><10</td>
<td>260</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>1304</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>1304</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>4</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>111</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>19</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>502</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>NS</td>
<td><10</td>
<td>630</td>
<td>NS</td>
<td><5</td>
<td>1595</td>
<td><5</td>
<td>83</td>
</tr>
<tr>
<td>502</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>NS</td>
<td><10</td>
<td>689</td>
<td>NS</td>
<td><5</td>
<td>1980</td>
<td><5</td>
<td>89</td>
</tr>
<tr>
<td>8605</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><10</td>
<td>571</td>
<td><1</td>
<td><5</td>
<td>38</td>
<td><5</td>
<td>85</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><10</td>
<td>657</td>
<td><1</td>
<td><5</td>
<td>67</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td>525</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td>475</td>
<td><1</td>
<td><5</td>
<td>132</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><10</td>
<td>311</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><10</td>
<td>302</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td>239</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td>201</td>
<td><1</td>
<td><5</td>
<td>11</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><10</td>
<td>454</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><10</td>
<td>396</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td>354</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td>328</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><10</td>
<td>440</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><10</td>
<td>441</td>
<td><1</td>
<td><5</td>
<td>18</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td>324</td>
<td><1</td>
<td><5</td>
<td>12</td>
<td><5</td>
<td><25</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td>271</td>
<td><1</td>
<td><5</td>
<td>10</td>
<td><5</td>
<td><25</td>
</tr>
</tbody>
</table>

Note: Bolding indicates a metal concentration that exceeds the GSL.
NS - Not sampled.

° GSLs have been established by selection of the larger of the WVDP background concentration or the 6 NYCRR TOGS 1.1.1 Class GA Groundwater Quality Standards. (See Table D-1B).
TABLE D-2G (continued)

2014 Results for Metals in Groundwater

Compared with WVDP Groundwater Screening Levels

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>Lead µg/L</th>
<th>Mercury µg/L</th>
<th>Nickel µg/L</th>
<th>Selenium µg/L</th>
<th>Silver µg/L</th>
<th>Thallium µg/L</th>
<th>Tin µg/L</th>
<th>Vanadium µg/L</th>
<th>Zinc µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>706</td>
<td>UP</td>
<td>Mar-14</td>
<td><3</td>
<td><0.2</td>
<td>280</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td>240</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td>250</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>706</td>
<td>UP</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td>420</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>1302</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>1304</td>
<td>UP</td>
<td>Mar-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>1304</td>
<td>UP</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>1304</td>
<td>UP</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>1304</td>
<td>UP</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>111</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>NS</td>
<td>NS</td>
<td><50</td>
<td><20</td>
</tr>
<tr>
<td>502</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td>216</td>
<td><5</td>
<td><10</td>
<td>NS</td>
<td>NS</td>
<td><50</td>
<td>31</td>
</tr>
<tr>
<td>502</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td>272</td>
<td><5</td>
<td><10</td>
<td>NS</td>
<td>NS</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>8605</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>21</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td>2.0</td>
<td><3000</td>
<td><50</td>
<td>20</td>
</tr>
</tbody>
</table>

Note: Bolding indicates a metal concentration that exceeds the GSL.
NS - Not sampled.

GSLs have been established by selection of the larger of the WVDP background concentration or the 6 NYCRR TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1B).
TABLE D-2G (continued)

2014 Results for Metals in Groundwater
Compared with WVDP Groundwater Screening Levels

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>Antimony µg/L</th>
<th>Arsenic µg/L</th>
<th>Barium µg/L</th>
<th>Beryllium µg/L</th>
<th>Cadmium µg/L</th>
<th>Chromium µg/L</th>
<th>Cobalt µg/L</th>
<th>Copper µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Screening Levels(^a)</td>
<td>15.1</td>
<td>25</td>
<td>1,000</td>
<td>3</td>
<td>7.27</td>
<td>52.3</td>
<td>67.8</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weathered Lavery Till Unit</td>
<td></td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td><10</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td><10</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td><10</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td><10</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>Unweathered Lavery Till Unit</td>
<td></td>
</tr>
<tr>
<td>909</td>
<td>DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td>14</td>
<td>230</td>
<td><1</td>
<td><5</td>
<td><10</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>405</td>
<td>UP</td>
<td>Mar-14</td>
<td><3</td>
<td><10</td>
<td>270</td>
<td><1</td>
<td><5</td>
<td>71</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>405</td>
<td>UP</td>
<td>Jun-14</td>
<td><3</td>
<td><10</td>
<td>250</td>
<td><1</td>
<td><5</td>
<td>190</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>405</td>
<td>UP</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>85</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>405</td>
<td>UP</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td>16</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>1303</td>
<td>UP</td>
<td>Mar-14</td>
<td><3</td>
<td>16</td>
<td>260</td>
<td><1</td>
<td><5</td>
<td>12</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>1303</td>
<td>UP</td>
<td>Jun-14</td>
<td><3</td>
<td>11</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td><10</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>1303</td>
<td>UP</td>
<td>Sep-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td><10</td>
<td><50</td>
<td><25</td>
</tr>
<tr>
<td>1303</td>
<td>UP</td>
<td>Dec-14</td>
<td><3</td>
<td><10</td>
<td><200</td>
<td><1</td>
<td><5</td>
<td><10</td>
<td><50</td>
<td><25</td>
</tr>
</tbody>
</table>

\(^a\) GSLs have been established by selection of the larger of the WVDP background concentration or the 6 NYCRR TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1B).
TABLE D-2G (concluded)

2014 Results for Metals in Groundwater

Compared with WVDP Groundwater Screening Levels

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>Lead µg/L</th>
<th>Mercury µg/L</th>
<th>Nickel µg/L</th>
<th>Selenium µg/L</th>
<th>Silver µg/L</th>
<th>Thallium µg/L</th>
<th>Tin µg/L</th>
<th>Vanadium µg/L</th>
<th>Zinc µg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDATR DOWN</td>
<td>Mar-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><2.0</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>NDATR DOWN</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><2.0</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>NDATR DOWN</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><2.0</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>NDATR DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><2.0</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>909 DOWN</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>405 UP</td>
<td>Mar-14</td>
<td><3</td>
<td><0.2</td>
<td>1,500</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>405 UP</td>
<td>Jun-14</td>
<td><3</td>
<td><0.2</td>
<td>3,000</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>405 UP</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td>2,300</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>405 UP</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td>1,500</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>1303 UP</td>
<td>Mar-14</td>
<td>11</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>1303 UP</td>
<td>Jun-14</td>
<td>7</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1303 UP</td>
<td>Sep-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>1303 UP</td>
<td>Dec-14</td>
<td><3</td>
<td><0.2</td>
<td><40</td>
<td><5</td>
<td><10</td>
<td><0.5</td>
<td><3000</td>
<td><50</td>
<td><20</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bolding indicates a metal concentration that exceeds the GSL.

* GSLs have been established by selection of the larger of the WVDP background concentration or the 6 NYCRR TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1B).
Appendix D. Summary of Groundwater Monitoring Data

TABLE D-2H

<table>
<thead>
<tr>
<th>Location</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>C-14 µCi/mL</th>
<th>Sr-90 µCi/mL</th>
<th>Tc-99 µCi/mL</th>
<th>I-129 µCi/mL</th>
<th>Cs-137 µCi/mL</th>
<th>Ra-226 µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Screening Levels</td>
<td></td>
<td></td>
<td>2.82E-08</td>
<td>5.90E-09</td>
<td>5.02E-09</td>
<td>9.61E-10</td>
<td>1.03E-08</td>
<td>1.33E-09</td>
</tr>
<tr>
<td>Sand and Gravel Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>UP</td>
<td>Dec-14</td>
<td>-2.02±2.79E-08</td>
<td>1.02±7.88E-10</td>
<td>-1.56±2.13E-09</td>
<td>-1.01±3.07E-10</td>
<td>-2.33±2.90E-09</td>
<td>2.80±0.49E-09</td>
</tr>
<tr>
<td>1304</td>
<td>UP</td>
<td>Dec-14</td>
<td>-0.08±2.88E-08</td>
<td>-1.14±0.84E-09</td>
<td>-0.72±2.24E-09</td>
<td>-2.43±7.37E-10</td>
<td>1.72±2.93E-09</td>
<td>2.09±0.43E-09</td>
</tr>
<tr>
<td>406</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>0.17±2.89E-08</td>
<td>0.57±1.08E-09</td>
<td>3.06±2.33E-09</td>
<td>1.12±1.15E-09</td>
<td>2.76±2.01E-09</td>
<td>1.47±0.35E-09</td>
</tr>
<tr>
<td>408</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>0.07±2.93E-08</td>
<td>8.59±0.04E-05</td>
<td>1.48±0.28E-08</td>
<td>0.24±1.12E-09</td>
<td>-0.26±5.22E-09</td>
<td>9.64±3.19E-10</td>
</tr>
<tr>
<td>501</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>NS</td>
<td>4.05±0.03E-05</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>502</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>NS</td>
<td>4.00±0.03E-05</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>8609</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>NS</td>
<td>5.74±0.31E-07</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>801</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>NS</td>
<td>2.57±0.07E-06</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>MP-01</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>1.43±2.99E-08</td>
<td>1.42±0.01E-04</td>
<td>2.11±0.30E-08</td>
<td>1.14±1.74E-09</td>
<td>4.37±3.68E-09</td>
<td>NS</td>
</tr>
<tr>
<td>MP-02</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>1.87±3.01E-08</td>
<td>1.51±0.01E-04</td>
<td>4.11±0.36E-08</td>
<td>2.09±1.52E-09</td>
<td>5.55±5.15E-09</td>
<td>NS</td>
</tr>
<tr>
<td>MP-03</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>2.19±3.02E-08</td>
<td>1.04±0.01E-04</td>
<td>2.39±0.31E-08</td>
<td>0.29±1.47E-09</td>
<td>-0.02±4.43E-09</td>
<td>NS</td>
</tr>
<tr>
<td>MP-04</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>-0.25±2.91E-08</td>
<td>1.36±0.01E-04</td>
<td>3.06±0.33E-08</td>
<td>0.31±1.19E-09</td>
<td>2.91±4.52E-09</td>
<td>NS</td>
</tr>
<tr>
<td>Weathered Lavery Till Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
<td>Jun-14</td>
<td>0.72±2.96E-08</td>
<td>2.87±0.10E-07</td>
<td>1.81±2.36E-09</td>
<td>2.18±0.34E-08</td>
<td>-1.72±3.73E-09</td>
<td>1.06±0.43E-09</td>
</tr>
<tr>
<td>NDATR</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>1.16±2.94E-08</td>
<td>2.01±0.07E-07</td>
<td>1.42±2.24E-09</td>
<td>2.18±0.32E-08</td>
<td>0.00±4.66E-09</td>
<td>1.74±2.34E-10</td>
</tr>
<tr>
<td>909</td>
<td>DOWN</td>
<td>Dec-14</td>
<td>1.50±2.97E-08</td>
<td>1.14±0.05E-07</td>
<td>1.01±2.18E-09</td>
<td>3.43±1.98E-09</td>
<td>-1.17±2.87E-09</td>
<td>1.05±0.41E-09</td>
</tr>
</tbody>
</table>

Note: Bolding indicates radiological concentration that exceeds the GSL.

NS - Not sampled.

Hydraulic position is relative to other wells within the same hydrologic unit.

The GSLs for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).

This result is not bolded because it was flagged with a "UJ" as not detected above the level of the associated value. The sample quantitation limit is an estimated quantity.
Appendix D. Summary of Groundwater Monitoring Data

TABLE D-2H (continued)

2014 Radioactivity in Groundwater From Selected Monitoring Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>Ra-226 µCi/mL</th>
<th>U-232 µCi/mL</th>
<th>U-233/234 µCi/mL</th>
<th>U-235/236 µCi/mL</th>
<th>U-238 µCi/mL</th>
<th>Total U µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Screening Levels</td>
<td>2.16E-09</td>
<td>1.38E-10</td>
<td>6.24E-10</td>
<td>8.07E-11</td>
<td>4.97E-10</td>
<td>1.34E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sand and Gravel Unit

<table>
<thead>
<tr>
<th>Location</th>
<th>Date Collected</th>
<th>Ra-226 µCi/mL</th>
<th>U-232 µCi/mL</th>
<th>U-233/234 µCi/mL</th>
<th>U-235/236 µCi/mL</th>
<th>U-238 µCi/mL</th>
<th>Total U µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>401 UP Dec-14</td>
<td>3.78±3.19E-10</td>
<td>1.10±1.14E-10</td>
<td>3.27±1.63E-10</td>
<td>0.99±5.49E-11</td>
<td>2.18±1.35E-10</td>
<td>6.13±0.22E-04</td>
<td></td>
</tr>
<tr>
<td>1304 UP Dec-14</td>
<td>3.65±3.32E-10</td>
<td>-0.93±6.40E-11</td>
<td>3.79±1.75E-10</td>
<td>3.42±6.73E-11</td>
<td>2.82±1.53E-10</td>
<td>4.08±0.16E-04</td>
<td></td>
</tr>
<tr>
<td>406 DOWN Dec-14</td>
<td>1.39±0.46E-09</td>
<td>0.61±6.95E-11</td>
<td>1.88±1.34E-10</td>
<td>2.24±7.65E-11</td>
<td>0.97±1.05E-10</td>
<td>3.47±0.16E-04</td>
<td></td>
</tr>
<tr>
<td>408 DOWN Dec-14</td>
<td>2.99±7.06E-09</td>
<td>-0.24±5.66E-11</td>
<td>6.03±1.83E-10</td>
<td>2.11±4.86E-11</td>
<td>3.26±1.36E-10</td>
<td>3.10±0.11E-03</td>
<td></td>
</tr>
<tr>
<td>MP-01 DOWN Dec-14</td>
<td>NS</td>
<td>7.84±7.18E-11</td>
<td>5.17±1.87E-10</td>
<td>3.26±5.59E-11</td>
<td>3.17±1.47E-10</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>MP-02 DOWN Dec-14</td>
<td>NS</td>
<td>1.28±0.88E-10</td>
<td>6.21±2.12E-10</td>
<td>1.56±1.11E-10</td>
<td>5.45±1.91E-10</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>MP-03 DOWN Dec-14</td>
<td>NS</td>
<td>1.42±4.84E-11</td>
<td>7.96±2.54E-10</td>
<td>8.79±9.47E-11</td>
<td>9.84±2.74E-10</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>MP-04 DOWN Dec-14</td>
<td>NS</td>
<td>5.91±6.37E-11</td>
<td>1.05±0.25E-09</td>
<td>1.78±1.07E-10</td>
<td>1.20±0.27E-09</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

Weathered Laverly Till Unit

<table>
<thead>
<tr>
<th>Location</th>
<th>Date Collected</th>
<th>Ra-226 µCi/mL</th>
<th>U-232 µCi/mL</th>
<th>U-233/234 µCi/mL</th>
<th>U-235/236 µCi/mL</th>
<th>U-238 µCi/mL</th>
<th>Total U µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDATR DOWN Jun-14</td>
<td>3.45±0.85E-09</td>
<td>4.66±5.91E-11</td>
<td>1.42±0.28E-09</td>
<td>8.14±7.07E-11</td>
<td>9.65±2.27E-10</td>
<td>3.31±0.08E-03</td>
<td></td>
</tr>
<tr>
<td>NDATR DOWN Dec-14</td>
<td>1.59±0.44E-09</td>
<td>0.58±6.06E-11</td>
<td>1.61±0.38E-09</td>
<td>4.03±7.92E-11</td>
<td>7.04±2.63E-10</td>
<td>2.56±0.08E-03</td>
<td></td>
</tr>
<tr>
<td>909 DOWN Dec-14</td>
<td>1.20±0.67E-09</td>
<td>-1.37±8.03E-11</td>
<td>1.68±0.44E-09</td>
<td>0.30±1.02E-10</td>
<td>1.26±0.38E-09</td>
<td>2.99±0.10E-03</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bolding indicates radiological concentration that exceeds the GSL. NS - Not sampled.

- **Hydraulic position** is relative to other wells within the same hydrologic unit.
- The GSls for radiological constituents are set equal to the larger of the background concentrations or the TOGS 1.1.1 Class GA Groundwater Quality Standards (See Table D-1A).
- This result is not bolded because it was flagged with a "UJ" as not detected above the level of the associated value. The sample quantitation limit is an estimated quantity.

TABLE D-2H (concluded)

2014 Radioactivity in Groundwater From Selected Monitoring Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Hydraulic Position</th>
<th>Date Collected</th>
<th>Np-237 µCi/mL</th>
<th>Pu-238 µCi/mL</th>
<th>Pu-239/240 µCi/mL</th>
<th>Pu-241 µCi/mL</th>
<th>Am-241 µCi/mL</th>
<th>Cm-243/244 µCi/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand and Gravel Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP-01 DOWN Dec-14</td>
<td>0.13±1.32E-10</td>
<td>-1.27±2.16E-11</td>
<td>1.25±2.45E-11</td>
<td>8.73±8.47E-09</td>
<td>0.50±2.85E-11</td>
<td>-0.26±2.16E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP-02 DOWN Dec-14</td>
<td>1.50±1.35E-10</td>
<td>0.49±1.51E-11</td>
<td>1.85±2.38E-11</td>
<td>7.76±7.38E-09</td>
<td>0.31±2.34E-11</td>
<td>0.71±2.91E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP-03 DOWN Dec-14</td>
<td>1.14±5.09E-11</td>
<td>-0.20±5.70E-11</td>
<td>0.44±3.01E-11</td>
<td>6.78±8.33E-09</td>
<td>1.04±2.95E-11</td>
<td>0.16±1.92E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP-04 DOWN Dec-14</td>
<td>-3.59±4.51E-11</td>
<td>-1.56±2.18E-11</td>
<td>1.52±3.52E-11</td>
<td>1.15±0.87E-08</td>
<td>-0.09±2.38E-11</td>
<td>-0.09±2.36E-11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Hydraulic position** is relative to other wells within the same hydrologic unit.
- Groundwater screening levels have not been established for Np-237, Pu-238, Pu-239/240, Pu-241, Am-241, or Cm-234/244.
APPENDIX E
Summary of Biological Data

TABLE E-1
2014 Radioactivity Concentrations in Milk

<table>
<thead>
<tr>
<th>Location</th>
<th>K-40 (µCi/mL)</th>
<th>Sr-90 (µCi/mL)</th>
<th>I-129 (µCi/mL)</th>
<th>Cs-137 (µCi/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFMFLDMN Annual</td>
<td>1.49±0.13E-06</td>
<td>3.94±9.94E-10</td>
<td>-3.00±3.50E-10</td>
<td>1.34±3.05E-09</td>
</tr>
</tbody>
</table>

Note: The near-site milk sample (BFMFLDMN) is located 5.1 km southeast of the site. The control milk sample (BFMCTLS) was last sampled in 2012. It will be sampled again in 2017.

TABLE E-2
2014 Radioactivity Concentrations in Venison

<table>
<thead>
<tr>
<th>Location</th>
<th>% Moisture</th>
<th>H-3 (µCi/mL)</th>
<th>K-40 (µCi/g - dry)</th>
<th>Sr-90 (µCi/g - dry)</th>
<th>Cs-137 (µCi/g - dry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deer Flesh Background</td>
<td>74.5</td>
<td>-0.50±1.04E-07</td>
<td>1.13±0.08E-05</td>
<td>-1.63±1.74E-09</td>
<td>8.05±4.22E-08</td>
</tr>
<tr>
<td>Deer Flesh Background</td>
<td>72.1</td>
<td>9.04±8.81E-08</td>
<td>8.35±0.64E-06</td>
<td>1.70±2.84E-09</td>
<td>1.80±1.98E-08</td>
</tr>
<tr>
<td>Deer Flesh Background</td>
<td>72.7</td>
<td>-0.16±8.52E-08</td>
<td>9.33±0.68E-06</td>
<td>0.01±2.80E-09</td>
<td>0.89±2.68E-08</td>
</tr>
<tr>
<td>Deer Flesh Near-Site</td>
<td>74.5</td>
<td>-0.11±1.05E-07</td>
<td>9.18±0.56E-06</td>
<td>-2.64±2.19E-09</td>
<td>1.27±1.80E-08</td>
</tr>
<tr>
<td>Deer Flesh Near-Site</td>
<td>75.3</td>
<td>-0.08±1.04E-07</td>
<td>1.15±0.09E-05</td>
<td>-0.85±2.29E-09</td>
<td>5.67±2.51E-08</td>
</tr>
<tr>
<td>Deer Flesh Near-Site</td>
<td>74.8</td>
<td>0.08±1.05E-07</td>
<td>1.12±0.06E-05</td>
<td>2.56±1.92E-09</td>
<td>2.07±1.63E-08</td>
</tr>
</tbody>
</table>

TABLE E-3
2014 Radioactivity Concentrations in Food Crops

The frequency of sampling of food crops has been decreased from annual to once every five years, consistent with guidance on periodic confirmatory sampling in DOE/EH-0173T. Food crops will next be sampled in CY 2017.

TABLE E-4
2014 Radioactivity Concentrations in Edible Portions of Fish

The frequency of sampling fish has been decreased from annual to once every five years, consistent with guidance on periodic confirmatory sampling in DOE/EH-0173T. Fish will next be sampled in CY 2017.
APPENDIX F
Summary of Direct Radiation Monitoring Data

TABLE F-1
Summary of 2014 Semiannual Averages of Off-Site TLD Measurements\(^a\)
(mR±2 SD/quarter)

<table>
<thead>
<tr>
<th>Location Number (^b)</th>
<th>1st Half</th>
<th>2nd Half</th>
<th>Location Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFTLD01</td>
<td>15±1</td>
<td>17±1</td>
<td>16±1</td>
</tr>
<tr>
<td>DFTLD02</td>
<td>14±1</td>
<td>16±1</td>
<td>15±1</td>
</tr>
<tr>
<td>DFTLD03</td>
<td>12±1</td>
<td>13±1</td>
<td>13±1</td>
</tr>
<tr>
<td>DFTLD04</td>
<td>14±2</td>
<td>15±2</td>
<td>15±2</td>
</tr>
<tr>
<td>DFTLD05</td>
<td>15±2</td>
<td>16±2</td>
<td>15±2</td>
</tr>
<tr>
<td>DFTLD06</td>
<td>13±1</td>
<td>15±1</td>
<td>14±1</td>
</tr>
<tr>
<td>DFTLD07</td>
<td>12±1</td>
<td>13±1</td>
<td>12±1</td>
</tr>
<tr>
<td>DFTLD08</td>
<td>14±1</td>
<td>15±1</td>
<td>14±1</td>
</tr>
<tr>
<td>DFTLD09</td>
<td>13±1</td>
<td>14±1</td>
<td>14±1</td>
</tr>
<tr>
<td>DFTLD10</td>
<td>13±1</td>
<td>14±1</td>
<td>14±1</td>
</tr>
<tr>
<td>DFTLD11</td>
<td>13±1</td>
<td>14±1</td>
<td>13±1</td>
</tr>
<tr>
<td>DFTLD12</td>
<td>14±1</td>
<td>15±1</td>
<td>14±1</td>
</tr>
<tr>
<td>DFTLD13</td>
<td>15±1</td>
<td>16±1</td>
<td>16±1</td>
</tr>
<tr>
<td>DFTLD14</td>
<td>14±1</td>
<td>15±1</td>
<td>14±1</td>
</tr>
<tr>
<td>DFTLD15</td>
<td>13±1</td>
<td>15±2</td>
<td>14±1</td>
</tr>
<tr>
<td>DFTLD16</td>
<td>13±2</td>
<td>14±1</td>
<td>14±1</td>
</tr>
<tr>
<td>DFTLD20</td>
<td>12±1</td>
<td>13±1</td>
<td>12±1</td>
</tr>
<tr>
<td>DFTLD23 (Background)</td>
<td>15±2</td>
<td>16±2</td>
<td>15±2</td>
</tr>
</tbody>
</table>

\(^a\) The frequency of collection at the TLD locations was reduced from quarterly to semiannual in 2008, however data are reported in units of mR per quarter for comparability with historical results.

\(^b\) Off-site locations are shown on Figures A-13 and A-14.

Conversion factor: Milliroentgen (mR) units are used to report exposure rates in air. To convert mR to mrem (dose to humans), a conversion factor of 1.03 must be applied. For example, a reported exposure rate of 18.1 mR/quarter would be equivalent to 18.6 mrem/quarter (based upon dose-equivalent phantom calibration using cesium-137).
TABLE F-2

Summary of 2014 Semiannual Averages of On-Site TLD Measurements

(mR±2SD/quarter)

<table>
<thead>
<tr>
<th>Location Number</th>
<th>1st Half</th>
<th>2nd Half</th>
<th>Location Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNTRLD24</td>
<td>431±42</td>
<td>489±48</td>
<td>460±45</td>
</tr>
<tr>
<td>DNTRLD28</td>
<td>15±2</td>
<td>16±1</td>
<td>16±2</td>
</tr>
<tr>
<td>DNTRLD32</td>
<td>14±1</td>
<td>16±1</td>
<td>15±1</td>
</tr>
<tr>
<td>DNTRLD33</td>
<td>16±1</td>
<td>17±1</td>
<td>17±1</td>
</tr>
<tr>
<td>DNTRLD34</td>
<td>15±1</td>
<td>16±1</td>
<td>16±1</td>
</tr>
<tr>
<td>DNTRLD35</td>
<td>16±1</td>
<td>16±1</td>
<td>16±1</td>
</tr>
<tr>
<td>DNTRLD36</td>
<td>14±1</td>
<td>14±1</td>
<td>14±1</td>
</tr>
<tr>
<td>DNTRLD38</td>
<td>44±8</td>
<td>44±6</td>
<td>44±7</td>
</tr>
<tr>
<td>DNTRLD40</td>
<td>103±20</td>
<td>109±18</td>
<td>106±19</td>
</tr>
<tr>
<td>DNTRLD43</td>
<td>13±1</td>
<td>14±2</td>
<td>14±1</td>
</tr>
<tr>
<td>DNTRLD44</td>
<td>16±1</td>
<td>17±2</td>
<td>17±2</td>
</tr>
</tbody>
</table>

a The frequency of collection at the TLD locations was reduced from quarterly to semiannual in 2008, however data are reported in units of mR per quarter for comparability with historical results.

b On-site locations are shown on Figure A-12.

Conversion factor: Milliroentgen (mR) units are used to report exposure rates in air. To convert mR to mrem (dose to humans), a conversion factor of 1.03 must be applied. For example, a reported exposure rate of 18.1mR/quarter would be equivalent to 18.6 mrem/quarter (based upon dose-equivalent phantom calibration using cesium-137).
APPENDIX G

Summary of Quality Assurance Crosscheck Analyses

TABLE G-1

Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP)\(^a\); Study 30; February 2014

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?(^b)</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPEP – 14 – GrF30, Air Filter – Gross Alpha/Beta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.872</td>
<td>1.77</td>
<td>0.530 - 3.01</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Gross beta</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.849</td>
<td>0.77</td>
<td>0.390 - 1.16</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>MAPEP – 14 – RdF30, Air Filter – Radiological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Am-241</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.0863</td>
<td>0.090</td>
<td>0.063 - 0.117</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.80</td>
<td>1.76</td>
<td>1.23 - 2.29</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Co-60</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.38</td>
<td>1.39</td>
<td>0.97 - 1.81</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.81</td>
<td>1.76</td>
<td>1.23 - 2.29</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Co-60</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.49</td>
<td>1.39</td>
<td>0.97 - 1.81</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.000819</td>
<td>0.00090</td>
<td>Sensitivity Evaluation(^e)</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.0711</td>
<td>0.0772</td>
<td>0.0540 - 0.1004</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-233/234</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.0159</td>
<td>0.0195</td>
<td>0.0137 - 0.0254</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-238</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.118</td>
<td>0.129</td>
<td>0.090 - 0.168</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>MAPEP – 14 – GrW30, Water – Gross Alpha/Beta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross alpha</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.846</td>
<td>0.849</td>
<td>0.255 - 1.443</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Gross beta</td>
<td>Water</td>
<td>Bq/L</td>
<td>4.60</td>
<td>4.19</td>
<td>2.10 - 6.29</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.955</td>
<td>0.849</td>
<td>0.255 - 1.443</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Gross beta</td>
<td>Water</td>
<td>Bq/L</td>
<td>4.67</td>
<td>4.19</td>
<td>2.10 - 6.29</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>MAPEP – 14 – MoW30, Water – Alkaline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.0227</td>
<td>^c False Positive Test(^d)</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Cs-137</td>
<td>Water</td>
<td>Bq/L</td>
<td>28.4</td>
<td>28.9</td>
<td>20.2 - 37.6</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Co-60</td>
<td>Water</td>
<td>Bq/L</td>
<td>15.8</td>
<td>16.0</td>
<td>11.2 - 20.8</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>H-3</td>
<td>Water</td>
<td>Bq/L</td>
<td>352</td>
<td>321</td>
<td>225 - 417</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Water</td>
<td>Bq/L</td>
<td>7.57</td>
<td>8.51</td>
<td>5.96 - 11.06</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Am-241</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.759</td>
<td>0.720</td>
<td>0.504 - 0.936</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Water</td>
<td>Bq/L</td>
<td>29.7</td>
<td>28.9</td>
<td>20.2 - 37.6</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Co-60</td>
<td>Water</td>
<td>Bq/L</td>
<td>16.6</td>
<td>16.0</td>
<td>11.2 - 20.8</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>H-3</td>
<td>Water</td>
<td>Bq/L</td>
<td>308</td>
<td>321</td>
<td>225 - 417</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.764</td>
<td>0.828</td>
<td>0.580 - 1.076</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.659</td>
<td>0.676</td>
<td>0.473 - 0.879</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Tc-99</td>
<td>Water</td>
<td>Bq/L</td>
<td>8.21</td>
<td>8.51</td>
<td>5.96 - 11.06</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-233/234</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.210</td>
<td>0.225</td>
<td>0.158 - 0.293</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-238</td>
<td>Water</td>
<td>Bq/L</td>
<td>1.41</td>
<td>1.45</td>
<td>1.02 - 1.89</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

Note: This report includes only those matrix/analyte combinations performed in support of the analysis of environmental samples collected as part of the WVDP monitoring program or special investigations.

ES - WVDP Environmental Services
GEL - GEL Laboratories, LLC.
\(^a\) MAPEP monitors performance and requests corrective action as required.
\(^b\) “Yes” - Result acceptable.
\(^c\) Although no actual reference value or acceptance range was provided, the results were assessed by MAPEP as acceptable.
\(^d\) The false positive test is used to identify laboratory results indicating the presence of an analyte, when, in fact, the analyte is far below the detection limit.
\(^e\) Sensitivity evaluation reported a statistically zero result.
TABLE G-1 (continued)
Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?</th>
<th>Analyzed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPEP – 14 – MaW30, Water – Inorganic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>Water</td>
<td>mg/L</td>
<td>1.85</td>
<td>1.91</td>
<td>1.34 - 2.48</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Water</td>
<td>mg/L</td>
<td>2.36</td>
<td>2.39</td>
<td>1.67 - 3.11</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Barium</td>
<td>Water</td>
<td>mg/L</td>
<td>4.37</td>
<td>4.54</td>
<td>3.18 - 5.90</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Water</td>
<td>mg/L</td>
<td>-0.000726</td>
<td></td>
<td></td>
<td>False</td>
<td>Test</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Water</td>
<td>mg/L</td>
<td>0.432</td>
<td>0.454</td>
<td>0.318 - 0.590</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Chromium</td>
<td>Water</td>
<td>mg/L</td>
<td>1.35</td>
<td>1.38</td>
<td>0.97 - 1.79</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Water</td>
<td>mg/L</td>
<td>1.32</td>
<td>1.39</td>
<td>0.97 - 1.81</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Copper</td>
<td>Water</td>
<td>mg/L</td>
<td>1.80</td>
<td>1.82</td>
<td>1.27 - 2.37</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Lead</td>
<td>Water</td>
<td>mg/L</td>
<td>0.863</td>
<td>0.898</td>
<td>0.629 - 1.167</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Mercury</td>
<td>Water</td>
<td>mg/L</td>
<td>0.00274</td>
<td></td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Nickel</td>
<td>Water</td>
<td>mg/L</td>
<td>0.000393</td>
<td>0.00056</td>
<td></td>
<td>Sensitivity Evaluation</td>
<td>Yes</td>
</tr>
<tr>
<td>Selenium</td>
<td>Water</td>
<td>mg/L</td>
<td>0.466</td>
<td>0.507</td>
<td>0.355 - 0.659</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Thallium</td>
<td>Water</td>
<td>mg/L</td>
<td>0.00267</td>
<td></td>
<td>False Positive Test</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Uranium – total</td>
<td>Water</td>
<td>mg/L</td>
<td>0.115</td>
<td>0.117</td>
<td>0.082 - 0.152</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Water</td>
<td>mg/L</td>
<td>1.82</td>
<td>1.83</td>
<td>1.28 - 2.38</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Zinc</td>
<td>Water</td>
<td>mg/L</td>
<td>4.99</td>
<td>5.31</td>
<td>3.72 - 6.90</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>MAPEP – 14 – MaS30, Soil – Inorganic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>Soil</td>
<td>mg/kg</td>
<td>54.1</td>
<td>55.3</td>
<td>38.7 - 71.9</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Soil</td>
<td>mg/kg</td>
<td>9.05</td>
<td>7.68</td>
<td>5.38 - 9.98</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Barium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>499</td>
<td>525</td>
<td>368 - 683</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>36.5</td>
<td>34.8</td>
<td>24.4 - 45.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>8.52</td>
<td>9.04</td>
<td>6.33 - 11.75</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Chromium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>50.3</td>
<td>52.6</td>
<td>36.8 - 68.4</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Soil</td>
<td>mg/kg</td>
<td>120</td>
<td>124</td>
<td>87 - 161</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Copper</td>
<td>Soil</td>
<td>mg/kg</td>
<td>144</td>
<td>130</td>
<td>91 - 169</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Lead</td>
<td>Soil</td>
<td>mg/kg</td>
<td>36.2</td>
<td>36.1</td>
<td>25.3 - 46.9</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Mercury</td>
<td>Soil</td>
<td>mg/kg</td>
<td>0.113</td>
<td>0.130</td>
<td>0.091 - 0.169</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Nickel</td>
<td>Soil</td>
<td>mg/kg</td>
<td>19.1</td>
<td>20.7</td>
<td>14.5 - 26.9</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Selenium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>15.1</td>
<td>19.2</td>
<td>13.4 - 25.0</td>
<td>W</td>
<td>GEL</td>
</tr>
<tr>
<td>Silver</td>
<td>Soil</td>
<td>mg/kg</td>
<td>20.5</td>
<td>19.0</td>
<td>13.3 - 24.7</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Thallium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>27.3</td>
<td>26.5</td>
<td>18.6 - 34.5</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Uranium – total</td>
<td>Soil</td>
<td>mg/kg</td>
<td>3.01</td>
<td>6.7</td>
<td>4.7 - 8.7</td>
<td>No</td>
<td>GEL</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>45.8</td>
<td>43.2</td>
<td>30.2 - 56.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Zinc</td>
<td>Soil</td>
<td>mg/kg</td>
<td>67.5</td>
<td>84</td>
<td>59 - 109</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

GEL - GEL Laboratories, LLC.

a MAPEP monitors performance and requests corrective action as required.

b “Yes” - Result acceptable. “W” - Result acceptable with warning 20%<Bias<30%.

c Although no actual reference value or acceptance range was provided, the results were assessed by MAPEP as acceptable.

d The false positive test is used to identify laboratory results indicating the presence of an analyte, when, in fact, the analyte is far below the detection limit.

e Sensitivity evaluation reported a statistically zero result.
TABLE G-1 (continued)

Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP)\(^a\); Study 30; February 2014

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?(^b)</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-241</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>65.2</td>
<td>68.0</td>
<td>47.6 - 88.4</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>1270</td>
<td>1238</td>
<td>867 - 1609</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Co-60</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>0.581</td>
<td>1.22</td>
<td>Sensitivity Evaluation(^c)</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-238</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>89.7</td>
<td>96</td>
<td>67 - 125</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>69.8</td>
<td>76.8</td>
<td>53.8 - 99.8</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>K-40</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>703</td>
<td>622</td>
<td>435 - 809</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>1.48</td>
<td>(^c)</td>
<td>False Positive Test(^d)</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Tc-99</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>37.1</td>
<td>(^c)</td>
<td>False Positive Test(^d)</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-234/233</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>30.5</td>
<td>81</td>
<td>57 - 105</td>
<td>No</td>
<td>GEL</td>
</tr>
<tr>
<td>U-238</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>34.7</td>
<td>83</td>
<td>58 - 108</td>
<td>No</td>
<td>GEL</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Veg</td>
<td>Bq/sample</td>
<td>4.98</td>
<td>4.74</td>
<td>3.32 - 6.16</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Co-60</td>
<td>Veg</td>
<td>Bq/sample</td>
<td>7.21</td>
<td>6.93</td>
<td>4.85 - 9.01</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Veg</td>
<td>Bq/sample</td>
<td>1.58</td>
<td>1.46</td>
<td>1.02 - 1.90</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>Water</td>
<td>µg/L</td>
<td>1.94</td>
<td>1.63</td>
<td>0.61 - 2.65</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>81.6</td>
<td>96</td>
<td>28 - 164</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>65.8</td>
<td>61</td>
<td>11 - 110</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>58.9</td>
<td>53</td>
<td>9 - 100</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>95.1</td>
<td>82</td>
<td>14 - 152</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><19.2</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>Water</td>
<td>µg/L</td>
<td>62.6</td>
<td>63</td>
<td>24 - 102</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>2-Methynaphthalene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
</tbody>
</table>

GEL - GEL Laboratories, LLC.

\(a\) MAPEP monitors performance and requests corrective action as required.

\(b\) “Yes” - Result acceptable. "No" - result did not pass the sensitivity evaluation.

\(c\) Although no actual reference value or acceptance range was provided, the results were assessed by MAPEP as acceptable.

\(d\) The false positive test is used to identify laboratory results indicating the presence of an analyte, when, in fact, the analyte is far below the detection limit.

\(e\) Sensitivity evaluation reported a statistically zero result.
TABLE G-1 (continued)
Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP)\(^a\); Study 30; February 2014

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>MAPEP – 14 – OrW30, Water – Organic Compounds</th>
<th>Accept?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>GEL</td>
<td>Yes</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>GEL</td>
<td>Yes</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>GEL</td>
<td>Yes</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>Water</td>
<td>µg/L</td>
<td>114</td>
<td>127</td>
<td>63 - 190</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenylether</td>
<td>Water</td>
<td>µg/L</td>
<td>50.8</td>
<td>49.1</td>
<td>23.3 - 74.9</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Anthracene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Bis(2-chloroethoxy)methane</td>
<td>Water</td>
<td>µg/L</td>
<td>107</td>
<td>122</td>
<td>60 - 184</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>Water</td>
<td>µg/L</td>
<td>94.1</td>
<td>96</td>
<td>34 - 158</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Bis(2-chloroisopropyl)ether</td>
<td>Water</td>
<td>µg/L</td>
<td>156</td>
<td>135</td>
<td>55 - 215</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>168</td>
<td>138</td>
<td>59 - 217</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Butylbenzylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>148</td>
<td>121</td>
<td>44 - 198</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Chrysene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Di-n-butylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>66.6</td>
<td>67</td>
<td>29 - 106</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>95.0</td>
<td>103</td>
<td>36 - 170</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>Water</td>
<td>µg/L</td>
<td>36.9</td>
<td>36.3</td>
<td>17.3 - 55.3</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Diethylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>150</td>
<td>122</td>
<td>30 - 215</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Dimethylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>85.5</td>
<td>73</td>
<td>11 - 158</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Fluorene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>74.4</td>
<td>77</td>
<td>42 - 113</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>Water</td>
<td>µg/L</td>
<td>105</td>
<td>112</td>
<td>22 - 202</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>Water</td>
<td>µg/L</td>
<td>98.2</td>
<td>75</td>
<td>13 - 166</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>Water</td>
<td>µg/L</td>
<td>86.3</td>
<td>74</td>
<td>13 - 137</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pyrene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Isophorone</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>N-Nitroso-di-n-propylamine</td>
<td>Water</td>
<td>µg/L</td>
<td>59.0</td>
<td>57</td>
<td>23 - 91</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>Water</td>
<td>µg/L</td>
<td>43.0</td>
<td>47</td>
<td>8 - 100</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Phenol</td>
<td>Water</td>
<td>µg/L</td>
<td><9.62</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pyrene</td>
<td>Water</td>
<td>µg/L</td>
<td><0.962</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

GEL - GEL Laboratories, LLC.
\(^a\) MAPEP monitors performance and requests corrective action as required.
\(^b\) "Yes" - Result acceptable.
\(^c\) Although no actual reference value or acceptance range was provided, the results were assessed by MAPEP as acceptable.
TABLE G-2
Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP)\(^a\); Study 31; August 2014

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?(^b)</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.194</td>
<td>0.53</td>
<td>0.16 - 0.90</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.03</td>
<td>1.06</td>
<td>0.53 - 1.59</td>
<td>Yes</td>
<td>ES</td>
</tr>
</tbody>
</table>

MAPEP – 14 – GrF31, Air Filter – Gross Alpha/Beta

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?(^b)</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-241</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.0561</td>
<td>0.0674</td>
<td>0.0472 - 0.0876</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.18</td>
<td>1.20</td>
<td>0.84 - 1.56</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Co-60</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.11</td>
<td>1.10</td>
<td>0.77 - 1.43</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.19</td>
<td>1.20</td>
<td>0.84 - 1.56</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Co-60</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>1.20</td>
<td>1.10</td>
<td>0.77 - 1.43</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Pu-238</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.115</td>
<td>0.107</td>
<td>0.075 - 0.139</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.0479</td>
<td>0.0468</td>
<td>0.0328 - 0.0608</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.762</td>
<td>0.703</td>
<td>0.492 - 0.914</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-233/234</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.0365</td>
<td>0.0358</td>
<td>0.0251 - 0.0465</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-238</td>
<td>Air Filter</td>
<td>Bq/sample</td>
<td>0.227</td>
<td>0.253</td>
<td>0.177 - 0.329</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

MAPEP – 14 – GrW31, Water – Gross Alpha/Beta

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?(^b)</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Alpha</td>
<td>Water</td>
<td>Bq/L</td>
<td>2.06</td>
<td>1.40</td>
<td>0.42 - 2.38</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>Water</td>
<td>Bq/L</td>
<td>7.09</td>
<td>6.50</td>
<td>3.25 - 9.75</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>Water</td>
<td>Bq/L</td>
<td>1.03</td>
<td>1.40</td>
<td>0.42 - 2.38</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Gross Beta</td>
<td>Water</td>
<td>Bq/L</td>
<td>6.98</td>
<td>6.50</td>
<td>3.25 - 9.75</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

MAPEP – 14 – XaW31, Water – Alkaline

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?(^b)</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>Water</td>
<td>Bq/L</td>
<td>17.7</td>
<td>18.4</td>
<td>12.9 - 23.9</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Co-60</td>
<td>Water</td>
<td>Bq/L</td>
<td>11.9</td>
<td>12.4</td>
<td>8.7 - 16.1</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>H-3</td>
<td>Water</td>
<td>Bq/L</td>
<td>220</td>
<td>208</td>
<td>146 - 270</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.260</td>
<td>False Positive Test(^d)</td>
<td>Yes</td>
<td>ES</td>
<td></td>
</tr>
<tr>
<td>Am-241</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.915</td>
<td>0.88</td>
<td>0.62 - 1.14</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Water</td>
<td>Bq/L</td>
<td>18.4</td>
<td>18.4</td>
<td>12.9 - 23.9</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Co-60</td>
<td>Water</td>
<td>Bq/L</td>
<td>12.5</td>
<td>12.4</td>
<td>8.7 - 16.1</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>H-3</td>
<td>Water</td>
<td>Bq/L</td>
<td>216</td>
<td>208</td>
<td>146 - 270</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-238</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.547</td>
<td>0.618</td>
<td>0.433 - 0.803</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.0154</td>
<td>0.0048</td>
<td>False Positive Test(^d)</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.0285</td>
<td>False Positive Test(^d)</td>
<td>Yes</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Tc-99</td>
<td>Water</td>
<td>Bq/L</td>
<td>6.92</td>
<td>6.99</td>
<td>4.89 - 9.09</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-233/234</td>
<td>Water</td>
<td>Bq/L</td>
<td>0.206</td>
<td>0.205</td>
<td>0.144 - 0.267</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-238</td>
<td>Water</td>
<td>Bq/L</td>
<td>1.28</td>
<td>1.42</td>
<td>0.99 - 1.85</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

Note: This report includes only those matrix/analyte combinations performed in support of the analysis of environmental samples collected as part of the WVDP monitoring program or special investigations.

ES - WVDP Environmental Services.

GEL - GEL Laboratories, LLC.

\(^a\) MAPEP monitors performance and requests corrective action as required.

\(^b\) "Yes" - Result acceptable.

\(^c\) Although no actual reference value or acceptance range was provided, the results were assessed by MAPEP as acceptable.

\(^d\) The false positive test is used to identify laboratory results indicating the presence of an analyte, when, in fact, the analyte is far below the detection limit.

\(^e\) Sensitivity evaluation reported a statistically zero result.
<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?</th>
<th>Analyzed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>Water</td>
<td>mg/L</td>
<td>0.00492</td>
<td></td>
<td>False Positive Test</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Water</td>
<td>mg/L</td>
<td>3.95</td>
<td>3.90</td>
<td>2.73 - 5.07</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Barium</td>
<td>Water</td>
<td>mg/L</td>
<td>14.0</td>
<td>14.8</td>
<td>10.4 - 19.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Water</td>
<td>mg/L</td>
<td>2.15</td>
<td>2.16</td>
<td>1.51 - 2.81</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Water</td>
<td>mg/L</td>
<td>0.599</td>
<td>0.629</td>
<td>0.440 - 0.818</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Chromium</td>
<td>Water</td>
<td>mg/L</td>
<td>0.018</td>
<td>0.0169</td>
<td>Sensitivity Evaluation</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Water</td>
<td>mg/L</td>
<td>6.21</td>
<td>6.74</td>
<td>4.72 - 8.76</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Copper</td>
<td>Water</td>
<td>mg/L</td>
<td>4.47</td>
<td>4.33</td>
<td>3.03 - 5.63</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Lead</td>
<td>Water</td>
<td>mg/L</td>
<td>-0.0119</td>
<td></td>
<td>False Positive Test</td>
<td>No</td>
<td>GEL</td>
</tr>
<tr>
<td>Mercury</td>
<td>Water</td>
<td>mg/L</td>
<td>0.00929</td>
<td>0.00956</td>
<td>0.00669 - 0.01243</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Nickel</td>
<td>Water</td>
<td>mg/L</td>
<td>5.69</td>
<td>6.09</td>
<td>4.26 - 7.92</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Selenium</td>
<td>Water</td>
<td>mg/L</td>
<td>0.461</td>
<td>0.499</td>
<td>0.349 - 0.649</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Thallium</td>
<td>Water</td>
<td>mg/L</td>
<td>1.90</td>
<td>2.18</td>
<td>1.53 - 2.83</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Uranium – total</td>
<td>Water</td>
<td>mg/L</td>
<td>0.107</td>
<td>0.114</td>
<td>0.080 - 0.148</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Water</td>
<td>mg/L</td>
<td>7.34</td>
<td>7.20</td>
<td>5.04 - 9.36</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Zinc</td>
<td>Water</td>
<td>mg/L</td>
<td>7.87</td>
<td>8.36</td>
<td>5.85 - 10.87</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Antimony</td>
<td>Soil</td>
<td>mg/kg</td>
<td>71.0</td>
<td>82</td>
<td>57 - 107</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Soil</td>
<td>mg/kg</td>
<td>64.7</td>
<td>67.9</td>
<td>47.5 - 88.3</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Barium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>719</td>
<td>802</td>
<td>561 - 1043</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>54.2</td>
<td>53.5</td>
<td>37.5 - 69.6</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>7.37</td>
<td>7.75</td>
<td>5.43 - 10.08</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Chromium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>108</td>
<td>112</td>
<td>78 - 146</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Soil</td>
<td>mg/kg</td>
<td>277</td>
<td>291</td>
<td>204 - 378</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Copper</td>
<td>Soil</td>
<td>mg/kg</td>
<td>180</td>
<td>177</td>
<td>124 - 230</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Lead</td>
<td>Soil</td>
<td>mg/kg</td>
<td>50.2</td>
<td>51.7</td>
<td>36.2 - 67.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Mercury</td>
<td>Soil</td>
<td>mg/kg</td>
<td>0.168</td>
<td>0.155</td>
<td>0.109 - 0.202</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Nickel</td>
<td>Soil</td>
<td>mg/kg</td>
<td>206</td>
<td>212</td>
<td>148 - 276</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Selenium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>16.7</td>
<td>19.9</td>
<td>13.9 - 25.9</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Silver</td>
<td>Soil</td>
<td>mg/kg</td>
<td>68.1</td>
<td>69.6</td>
<td>48.7 - 90.5</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Thallium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>144</td>
<td>157</td>
<td>110 - 204</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Uranium – total</td>
<td>Soil</td>
<td>mg/kg</td>
<td>19.3</td>
<td>20.9</td>
<td>14.6 - 27.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Vanadium</td>
<td>Soil</td>
<td>mg/kg</td>
<td>149</td>
<td>154</td>
<td>108 - 200</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Zinc</td>
<td>Soil</td>
<td>mg/kg</td>
<td>555</td>
<td>606</td>
<td>424 - 788</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

GEL - GEL Laboratories, LLC.

a MAPEP monitors performance and requests corrective action as required.

b "Yes" - Result acceptable. "W" - Result acceptable with warning 20%<\text{Bias}<30%.

c Although no actual reference value or acceptance range was provided, the results were assessed by MAPEP as acceptable.

d The false positive test is used to identify laboratory results indicating the presence of an analyte, when, in fact, the analyte is far below the detection limit.

e Sensitivity evaluation reported a statistically zero result.
TABLE G-2 (continued)
Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation
Program (MAPEP)\(^a\); Study 31; August 2014

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?(^b)</th>
<th>Analyzed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Am-241</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>88.4</td>
<td>85.5</td>
<td>59.9 - 111.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cs-137</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>1.64</td>
<td>1.48</td>
<td>(\text{False Positive Test})(^c)</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Co-60</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>821</td>
<td>779</td>
<td>545 - 1013</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-238</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>0.917</td>
<td>0.48</td>
<td>58.0 - 115.5</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pu-239/240</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>61.5</td>
<td>58.6</td>
<td>41.0 - 76.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>K-40</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>891</td>
<td>858</td>
<td>577 - 1071</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>466</td>
<td>589</td>
<td>412 - 766</td>
<td>W</td>
<td>GEL</td>
</tr>
<tr>
<td>U-233/234</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>90.5</td>
<td>89</td>
<td>62 - 116</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>U-238</td>
<td>Soil</td>
<td>Bq/kg</td>
<td>257</td>
<td>259</td>
<td>181 - 337</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

MAPEP – 14 – MaS31, Soil – Radiological

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept?(^b)</th>
<th>Analyzed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-137</td>
<td>Veg</td>
<td>Bq/sample</td>
<td>8.21</td>
<td>8.14</td>
<td>5.70 - 10.58</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Co-60</td>
<td>Veg</td>
<td>Bq/sample</td>
<td>6.17</td>
<td>6.11</td>
<td>4.28 - 7.94</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Veg</td>
<td>Bq/sample</td>
<td>0.692</td>
<td>0.85</td>
<td>0.60 - 1.11</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

MAPEP – 14 – RdV31, Vegetation – Radiological

GEL - GEL Laboratories, LLC.

\(\text{a} \) MAPEP monitors performance and requests corrective action as required.

\(\text{b} \) "Yes" - Result acceptable. "W" - Result acceptable with warning 20% < bias < 30%.

\(\text{c} \) Although no actual reference value or acceptance range was provided, the results were assessed by MAPEP as

\(\text{d} \) The false positive test is used to identify laboratory results indicating the presence of an analyte, when, in fact, the

\(\text{e} \) Sensitivity evaluation reported a statistically zero result.
TABLE G-2 (continued)
Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP) a; Study 31; August 2014

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept? b</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heptachlor</td>
<td>Water</td>
<td>µg/L</td>
<td>2.69</td>
<td>2.91</td>
<td>1.17 - 4.65</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>139</td>
<td>117</td>
<td>35 - 199</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>77.3</td>
<td>72</td>
<td>12 - 133</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td>108</td>
<td>98</td>
<td>45 - 151</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td>129</td>
<td>115</td>
<td>54 - 176</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2,4,Dimethylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td>59.6</td>
<td>51.8</td>
<td>23.0 - 80.6</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>Water</td>
<td>µg/L</td>
<td>94.7</td>
<td>71</td>
<td>10 - 149</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2,6-Dichlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>149</td>
<td>123</td>
<td>49 - 198</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>Water</td>
<td>µg/L</td>
<td>89.2</td>
<td>86</td>
<td>43 - 129</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>Water</td>
<td>µg/L</td>
<td><1.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td>91.2</td>
<td>93</td>
<td>36 - 151</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2-Methylanthalene</td>
<td>Water</td>
<td>µg/L</td>
<td><1.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td>43.5</td>
<td>48.2</td>
<td>15.6 - 80.7</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>2-Nitrofenol</td>
<td>Water</td>
<td>µg/L</td>
<td>98.1</td>
<td>80</td>
<td>33 - 126</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td><1.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>Water</td>
<td>µg/L</td>
<td>27.7</td>
<td>32.1</td>
<td>15.1 - 49.0</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>Water</td>
<td>µg/L</td>
<td>98.3</td>
<td>93</td>
<td>44 - 143</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenylether</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>Water</td>
<td>µg/L</td>
<td>40.0</td>
<td>64</td>
<td>12 - 157</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>Water</td>
<td>µg/L</td>
<td>95.0</td>
<td>95</td>
<td>42 - 147</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>Water</td>
<td>µg/L</td>
<td>34.4</td>
<td>36.3</td>
<td>15.7 - 57.0</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Anthracene</td>
<td>Water</td>
<td>µg/L</td>
<td><1.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>Water</td>
<td>µg/L</td>
<td>14.5</td>
<td>19.6</td>
<td>9.9 - 29.3</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>Water</td>
<td>µg/L</td>
<td>21.1</td>
<td>28.1</td>
<td>11.5 - 44.7</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>Water</td>
<td>µg/L</td>
<td><1.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>Water</td>
<td>µg/L</td>
<td>16.4</td>
<td>24.9</td>
<td>11.7 - 38.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>Water</td>
<td>µg/L</td>
<td><1.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>bis(2-chloroethoxy)methane</td>
<td>Water</td>
<td>µg/L</td>
<td>143</td>
<td>124</td>
<td>61 - 187</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>bis(2-chloroethyl)ether</td>
<td>Water</td>
<td>µg/L</td>
<td>46.3</td>
<td>46.4</td>
<td>16.5 - 76.3</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>bis(2-chloroisopropyl)ether</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>24.7</td>
<td>46.0</td>
<td>17.3 - 74.6</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Butylbenzylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td>c</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

GEL - GEL Laboratories, LLC.

a MAPEP monitors performance and requests corrective action as required.

b "Yes" - Result acceptable.

c Although no actual value or acceptance range was provided, the results were assessed by MAPEP as acceptable.
TABLE G-2 (concluded)

Crosscheck Sample Comparisons From the DOE Mixed Analyte Performance Evaluation Program (MAPEP)\(^a\); Study 31; August 2014

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Matrix</th>
<th>Units</th>
<th>Reported Value</th>
<th>Reference Value</th>
<th>Acceptance Range</th>
<th>Accept? (^b)</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chrysene</td>
<td>Water</td>
<td>µg/L</td>
<td>37.7</td>
<td><52.3</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Di–n–butylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Di–n–octylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>41.0</td>
<td>70.0</td>
<td>23.9 - 116.1</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Dibenz[a,h]anthracene</td>
<td>Water</td>
<td>µg/L</td>
<td>42.5</td>
<td>54.3</td>
<td>22.8 - 85.8</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Diethylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>137</td>
<td>120</td>
<td>30 - 211</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Dimethylphthalate</td>
<td>Water</td>
<td>µg/L</td>
<td>148</td>
<td>107</td>
<td>16 - 231</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>Water</td>
<td>µg/L</td>
<td>123</td>
<td>128</td>
<td>69 - 186</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Fluorene</td>
<td>Water</td>
<td>µg/L</td>
<td>149</td>
<td>133</td>
<td>71 - 196</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>115</td>
<td>136</td>
<td>74 - 197</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>Water</td>
<td>µg/L</td>
<td>57.3</td>
<td>60.7</td>
<td>10.2 - 111.3</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>Water</td>
<td>µg/L</td>
<td>118</td>
<td>84</td>
<td>14 - 184</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>Water</td>
<td>µg/L</td>
<td>50.2</td>
<td>52.7</td>
<td>8.9 - 98.2</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Indeno(1,2,3–c,d)pyrene</td>
<td>Water</td>
<td>µg/L</td>
<td>34.8</td>
<td>45.7</td>
<td>16.9 - 74.4</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Isophorone</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>N-Nitroso-di-n-propylamine</td>
<td>Water</td>
<td>µg/L</td>
<td>60.9</td>
<td>57.2</td>
<td>27.4 - 91.1</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>Water</td>
<td>µg/L</td>
<td>49.6</td>
<td>56</td>
<td>10 - 119</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>Water</td>
<td>µg/L</td>
<td><10.0</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Napthalene</td>
<td>Water</td>
<td>µg/L</td>
<td><1.00</td>
<td><10</td>
<td></td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>Water</td>
<td>µg/L</td>
<td>108</td>
<td>98</td>
<td>42 - 154</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>Water</td>
<td>µg/L</td>
<td>86.2</td>
<td>86</td>
<td>33 - 138</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>Water</td>
<td>µg/L</td>
<td>69.1</td>
<td>78.4</td>
<td>44.1 - 112.7</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Phenol</td>
<td>Water</td>
<td>µg/L</td>
<td>56.7</td>
<td>102</td>
<td>18 - 245</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Pyrene</td>
<td>Water</td>
<td>µg/L</td>
<td>30.1</td>
<td>42.5</td>
<td>20.5 - 64.6</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

GEL - GEL Laboratories, LLC.

\(^{a}\) MAPEP monitors performance and requests corrective action as required.

\(^{b}\) "Yes" - Result acceptable.

\(^{c}\) Although no actual value or acceptance range was provided, the results were assessed by MAPEP as acceptable.
TABLE G-3
Comparisons of Results From Crosscheck Samples Analyzed for Water Quality Parameters as Part of the EPA’s 2014 Discharge Monitoring Report - Quality Assurance (DMR-QA) Study 34; (2014) for the National Pollutant Discharge Elimination System (NPDES)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>Reference Value</th>
<th>Reported Value</th>
<th>Acceptance Range(^{a})</th>
<th>Accept?(^{b})</th>
<th>Analyzed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>µg/L</td>
<td>3,590</td>
<td>3,620</td>
<td>3000 - 4080</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Aluminum</td>
<td>µg/L</td>
<td>599</td>
<td>650</td>
<td>480 - 716</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Ammonia (as N)</td>
<td>mg/L</td>
<td>2.35</td>
<td>1.95</td>
<td>1.70 - 3.07</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Antimony</td>
<td>µg/L</td>
<td>843</td>
<td>819</td>
<td>693 - 968</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Arsenic (EPA 200.7 / 200.8)</td>
<td>µg/L</td>
<td>245</td>
<td>248 / 246</td>
<td>198 - 291</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Barium</td>
<td>µg/L</td>
<td>1,950</td>
<td>2,040</td>
<td>1660 - 2250</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Biochemical oxygen demand</td>
<td>mg/L</td>
<td>156</td>
<td>102</td>
<td>52.7 - 172</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Biochemical oxygen demand</td>
<td>mg/L</td>
<td>63.0</td>
<td>78.4</td>
<td>33.2 - 92.8</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cadmium</td>
<td>µg/L</td>
<td>800</td>
<td>789</td>
<td>680 - 920</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Chlorine (total residual)</td>
<td>µg/L</td>
<td>204</td>
<td>190</td>
<td>144 - 264</td>
<td>Yes</td>
<td>WWTF</td>
</tr>
<tr>
<td>Chromium (total)</td>
<td>µg/L</td>
<td>313</td>
<td>314</td>
<td>266 - 360</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Chromium (hexavalent)</td>
<td>µg/L</td>
<td>507</td>
<td>469</td>
<td>425 - 583</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Cobalt</td>
<td>µg/L</td>
<td>208</td>
<td>203</td>
<td>177 - 239</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Copper (EPA 200.7 / 200.8)</td>
<td>µg/L</td>
<td>443</td>
<td>443/453</td>
<td>377 - 510</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Copper</td>
<td>µg/L</td>
<td>675</td>
<td>698</td>
<td>574 - 776</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Cyanide, total</td>
<td>mg/L</td>
<td>0.550</td>
<td>0.514</td>
<td>0.357 - 0.742</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Iron</td>
<td>µg/L</td>
<td>3,920</td>
<td>4,000</td>
<td>3330 - 4500</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Lead (EPA 200.7 / 200.8)</td>
<td>µg/L</td>
<td>447</td>
<td>438/444</td>
<td>380 - 514</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Lead</td>
<td>µg/L</td>
<td>362</td>
<td>377</td>
<td>308 - 416</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Manganese</td>
<td>µg/L</td>
<td>308</td>
<td>312</td>
<td>262 - 354</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Mercury, 1631E</td>
<td>µg/L</td>
<td>13.5</td>
<td>14.3</td>
<td>9.45 - 17.6</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Nickel</td>
<td>µg/L</td>
<td>725</td>
<td>717</td>
<td>636 - 819</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>mg/L</td>
<td>12.5</td>
<td>11.3</td>
<td>10.4 - 14.6</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Nitrite (as N)</td>
<td>mg/L</td>
<td>2.13</td>
<td>2.4</td>
<td>1.82 - 2.45</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Oil & Grease (Gravimetric)</td>
<td>mg/L</td>
<td>77.5</td>
<td>53.0</td>
<td>59.8 - 85.3</td>
<td>No</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Oil & Grease (Gravimetric)</td>
<td>mg/L</td>
<td>97.0</td>
<td>95.6</td>
<td>68.7 - 113</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>pH</td>
<td>SU</td>
<td>7.84</td>
<td>7.88</td>
<td>7.64 - 8.04</td>
<td>Yes</td>
<td>ES</td>
</tr>
<tr>
<td>Phosphorus (total, as P)</td>
<td>mg/L</td>
<td>4.64</td>
<td>4.42</td>
<td>3.84 - 5.40</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Phosphorus (total, as P)</td>
<td>mg/L</td>
<td>1.69</td>
<td>1.62</td>
<td>1.35 - 2.02</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Selenium (EPA 200.7 / 200.8)</td>
<td>µg/L</td>
<td>928</td>
<td>927/914</td>
<td>788 - 1070</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/L</td>
<td>26.7</td>
<td>26.3</td>
<td>21.4 - 31.0</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Settleable solids</td>
<td>mg/L</td>
<td>34.2</td>
<td>38.0</td>
<td>28.2 - 43.2</td>
<td>Yes</td>
<td>WWTF</td>
</tr>
<tr>
<td>Settleable solids</td>
<td>mg/L</td>
<td>38.9</td>
<td>34.0</td>
<td>32.2 - 48.9</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Suspended solids (total)</td>
<td>mg/L</td>
<td>84.3</td>
<td>82.8</td>
<td>69.1 - 93.7</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Suspended solids (total)</td>
<td>mg/L</td>
<td>44.6</td>
<td>42.0</td>
<td>34.0 - 51.5</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>mg/L</td>
<td>609</td>
<td>588</td>
<td>548 - 670</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Total dissolved solids</td>
<td>mg/L</td>
<td>340</td>
<td>337</td>
<td>295 - 385</td>
<td>Yes</td>
<td>GEL</td>
</tr>
<tr>
<td>Total kjeldahl nitrogen (as N)</td>
<td>mg/L</td>
<td>6.09</td>
<td>4.98</td>
<td>4.32 - 7.95</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Vanadium</td>
<td>µg/L</td>
<td>1,790</td>
<td>1,760</td>
<td>1,530 - 2,060</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Zinc</td>
<td>µg/L</td>
<td>1,530</td>
<td>1,510</td>
<td>1300 - 1760</td>
<td>Yes</td>
<td>TestAmerica</td>
</tr>
<tr>
<td>Zinc</td>
<td>µg/L</td>
<td>663</td>
<td>689</td>
<td>564 - 762</td>
<td>Yes</td>
<td>GEL</td>
</tr>
</tbody>
</table>

Samples provided by Environmental Resource Associates (ERA) and Phenova.
ES - WVDP Environmental Services
WWTF - WVDP Waste Water Treatment Facility.
GEL - GEL Laboratories, LLC.
TestAmerica - TestAmerica Laboratories, Inc., Buffalo.

\(^{a}\) Acceptance limits are determined by ERA or Phenova.
\(^{b}\) “Yes” - Result acceptable; “No” - Result not acceptable.
APPENDIX H
West Valley Demonstration Project Act

West Valley Demonstration Project Act
(Public Law 96-368 [S.2443]; October 1, 1980)

(As presented in Exhibit G of the Cooperative Agreement between United States Department of Energy and New York State Energy Research and Development Authority on the Western New York Nuclear Service Center at West Valley, New York; Effective October 1, 1980 as amended September 18, 1981.)

EXHIBIT G
WEST VALLEY PROJECT DEMONSTRATION ACT

PUBLIC LAW 96–368 [S. 2443]; October 1, 1980

WEST VALLEY DEMONSTRATION PROJECT ACT

For Legislative History of this and other Laws, see Table 1, Public Laws and Legislative History, at end of final volume

An Act to authorize the Department of Energy to carry out a high-level liquid nuclear waste management demonstration project at the Western New York Service Center in West Valley, New York.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

SECTION 1. This Act may be cited as the "West Valley Demonstration Project Act".

SEC. 2. (a) The Secretary shall carry out, in accordance with this Act, a high level radioactive waste management demonstration project at the Western New York Service Center in West Valley, New York, for the purpose of demonstrating solidification techniques which can be used for preparing high level radioactive waste for disposal. Under the project the Secretary shall carry out the following activities:

(1) The Secretary shall solidify, in a form suitable for transportation and disposal, the high level radioactive waste at the Center by vitrification or by such other technology which the Secretary determines to be the most effective for solidification.
(2) The Secretary shall develop containers suitable for the permanent disposal of the high level radioactive waste solidified at the Center.
(3) The Secretary shall, as soon as feasible, transport, in accordance with applicable provisions of law, the waste solidified at the Center to an appropriate Federal repository for permanent disposal.
(4) The Secretary shall, in accordance with applicable licensing requirements, dispose of low level radioactive waste and transuranic waste produced by the solidification of the high level radioactive waste under the project.
(5) The Secretary shall decontaminate and decommission—

(A) the tanks and other facilities of the Center in which the high level radioactive waste solidified under the project was stored,
(B) the facilities used in the solidification of the waste, and
(C) any material and hardware used in connection with the project,

in accordance with such requirements as the Commission may prescribe.
(b) Before undertaking the project and during the fiscal year ending September 30, 1981, the Secretary shall carry out the following:

(1) The Secretary shall hold in the vicinity of the Center public hearings to inform the residents of the area in which the Center is located of the activities proposed to be undertaken under the project and to receive their comments on the project.
(2) The Secretary shall consider the various technologies available for the solidification and handling of high level radioactive waste taking into account the unique characteristics of such waste at the Center.
Appendix H. West Valley Demonstration Project Act

(3) The Secretary shall—
 (A) undertake detailed engineering and cost estimates for the project,
 (B) prepare a plan for the safe removal of the high level radioactive waste at the Center for the purposes of solidification and include in the plan provisions respecting the safe breaching of the tanks in which the waste is stored, operating equipment to accomplish the removal, and sluicing techniques,
 (C) conduct appropriate safety analyses of the project, and
 (D) prepare required environmental impact analyses of the project.

(4) The Secretary shall enter into a cooperative agreement with the State in accordance with the Federal Grant and Cooperative Agreement Act of 1977 under which the State will carry out the following:
 (A) The State will make available to the Secretary the facilities of the Center and the high level radioactive waste at the Center which are necessary for the completion of the project. The facilities and the waste shall be made available without the transfer of title and for such period as may be required for completion of the project.
 (B) The Secretary shall provide technical assistance in securing required license amendments.
 (C) The State shall pay 10 per centum of the costs of the project, as determined by the Secretary. In determining the costs of the project, the Secretary shall consider the value of the use of the Center for the project. The State may not use Federal funds to pay its share of the cost of the project, but may use the perpetual care fund to pay such share.
 (D) Submission jointly by the Department of Energy and the State of New York of an application for a licensing amendment as soon as possible with the Nuclear Regulatory Commission providing for the demonstration.

(c) Within one year from the date of the enactment of this Act, the Secretary shall enter into an agreement with the Commission to establish arrangements for review and consultation by the Commission with respect to the project: Provided, That review and consultation by the Commission pursuant to this subsection shall be conducted informally by the Commission and shall not include nor require formal procedures or actions by the Commission pursuant to the Atomic Energy Act of 1954, as amended, the Energy Reorganization Act of 1974, as amended, or any other law. The agreement shall provide for the following:

 (1) The Secretary shall submit to the Commission, for its review and comment, a plan for the solidification of the high level radioactive waste at the Center, the removal of the waste for purposes of its solidification, the preparation of the waste for disposal, and the decontamination of the facilities to be used in solidifying the waste. In preparing its comments on the plan, the Commission shall specify with precision its objections to any provision of the plan. Upon submission of a plan to the Commission, the Secretary shall publish a notice in the Federal Register of the submission of the plan and of its availability for public inspection, and, upon receipt of the comments of the Commission respecting a plan, the Secretary shall publish a notice in the Federal Register of the receipt of the comments and of the availability of the comments for public inspection. If the Secre-
Appendix H. West Valley Demonstration Project Act

Oct. 1 WEST VALLEY PROJECT ACT P.L. 96–368

(1) The term “Secretary” means the Secretary of Energy.
(2) The term “Commission” means the Nuclear Regulatory Commission.
(3) The term “State” means the State of New York.

94 Stat. 1349

G–3
Appendix H. West Valley Demonstration Project Act

WVDP Annual Site Environmental Report - Calendar Year 2014

P.L. 96–368

LAWS OF 96th CONG.—2nd SESS. Oct. 1

(4) The term “high level radioactive waste” means the high level radioactive waste which was produced by the reprocessing at the Center of spent nuclear fuel. Such term includes both liquid wastes which are produced directly in reprocessing, dry solid material derived from such liquid waste, and such other material as the Commission designates as high level radioactive waste for purposes of protecting the public health and safety.

(5) The term “transuranic waste” means material contaminated with elements which have an atomic number greater than 92, including neptunium, plutonium, americium, and curium, and which are in concentrations greater than 10 nanocuries per gram, or in such other concentrations as the Commission may prescribe to protect the public health and safety.

(6) The term “low level radioactive waste” means radioactive waste not classified as high level radioactive waste, transuranic waste, or byproduct material as defined in section 11 e. (2) of the Atomic Energy Act of 1954.

(7) The term “project” means the project prescribed by section 2(a).

(8) The term “Center” means the Western New York Service Center in West Valley, New York.

Approved October 1, 1980.