QUALITY ASSURANCE

The quality assurance (QA) program at the West Valley Demonstration Project (WVDP) provides for and documents consistency, precision, and accuracy in collecting and analyzing environmental samples and in interpreting and reporting environmental monitoring data.

Organizational Responsibilities

West Valley Nuclear Services Company (WVNS) is contractually obligated to implement a nuclear quality assurance program at the WVDP. Managers of programs, projects, and tasks are responsible for determining and documenting the applicability of quality assurance requirements to their activities and for implementing those requirements. For example, Environmental Laboratory management and staff are directly responsible for carrying out sampling and analytical activities in a manner consistent with good quality assurance practices and for following approved procedures.

Program Design

The quality assurance rule 10 CFR Part 830.120, Quality Assurance (U.S. Department of Energy [DOE]), and DOE Order 414.1A, Quality Assurance (U.S. Department of Energy 1999) provide the quality assurance program policies and requirements applicable to activities at the WVDP.

The quality assurance program focuses upon assigning responsibilities and upon thorough planning, specification, control, and documentation of all aspects of an activity in order to ensure the quality of both radiological and non-radiological monitoring data. The quality assurance program includes requirements in the following areas:
Chapter 5. Quality Assurance

√ Responsibility. Responsibilities involving overseeing, managing, and conducting an activity must be clearly defined. Personnel who verify that the activity has been completed correctly must be independent of those who performed it.

√ Planning. An activity must be planned beforehand and the plan followed. All activities must be documented. Similarly, purchases of any equipment or items must be planned, specified precisely, and verified for correctness upon receipt.

√ Control of design, procedures, items, and documents. Any activity, equipment, or construction must be clearly described or defined and tested, and changes in the design must be tested and documented. Procedures must clearly state how activities will be conducted. Only approved procedures may be used. Equipment or particular items affecting the quality of environmental data must be identified, inspected, calibrated, and tested before use. Calibration status must be clearly indicated. Items that do not conform to requirements must be identified and separated from other items and the nonconformity documented.

√ Documentation. Records of all activities must be kept in order to verify what was done and by whom. Records must be clearly traceable to an item or activity.

√ Corrective action. If a problem should arise the cause of the problem must be identified, a corrective action planned, responsibility assigned, and the problem remedied.

√ Audits. Scheduled audits and assessments must be conducted to verify compliance with all aspects of the quality assurance program and determine its effectiveness.

Subcontractor laboratories providing analytical services for the environmental monitoring program are contractually required to maintain a quality assurance program consistent with WVDP requirements.

Procedures

Those activities that affect the quality of environmental monitoring data are conducted according to approved procedures that clearly describe how the activity should be performed and what precautions are to be taken in connection with the activity. Any person performing an activity that could affect the quality of environmental monitoring data is trained in that procedure and must demonstrate proficiency.

New procedures are developed each time an activity is added to the monitoring program. Procedures are reviewed periodically and updated when necessary. Documents are controlled so that only current procedures are used.

Quality Control in the Field

Quality control (QC), an integral component of environmental monitoring quality assurance, is a way of verifying that samples are being collected and analyzed according to established quality assurance procedures. Quality control ensures that sample collection and analysis are consistent and repeatable and is a means of tracking down possible sources of error. For example, sample locations at the WVDP are clearly marked in the field to ensure that future samples are collected in the same locations; collection equipment in place in the field is routinely inspected, calibrated, and maintained; and automated sampling stations are kept locked to prevent tampering and to ensure sample integrity. Samples are collected into certified pre-cleaned containers of an appropriate material.
and capacity and are labeled immediately with the pertinent information. Date, time, person doing the collecting, and special field sampling conditions are recorded and kept as part of the record for that sample.

Chain-of-custody protocols are followed to ensure that samples are controlled and tracked for traceability. If necessary, samples are preserved as soon as possible after collection.

In order to assess quality problems that might be introduced by the sampling process, duplicate field samples, field blank samples, and trip blank samples are collected. Background samples are collected for baseline environmental information.

Field Duplicates. Field duplicates are samples collected simultaneously for the same analyte at one location, after which they are treated as separate samples. If the sampling matrix is homogeneous, field duplicates provide a means of assessing the precision of collection methods. Field duplicates are collected at a minimum rate of one per twenty analyses.

Field Blanks. A field blank is a sample of laboratory-distilled water that is put into a sample container at a field collection site and is processed from that point as a routine sample. Field blanks are used to detect contamination introduced by the sampling procedure. They are processed at a minimum rate of one per twenty analyses.

If the same collection equipment is used for more than one site, a special form of field blank known as an equipment blank may be collected by pouring laboratory-distilled water through cleaned collecting equipment and into a sample container. Equipment blanks are collected to detect any cross-contamination that may be passed from one sampling location to another by the equipment. Many wells and surface water collection stations have dedicated collecting equipment that remains at that location; equipment blanks are not necessary at these locations.

Trip Blanks. Trip blanks are prepared by pouring laboratory-distilled water into sample bottles in the laboratory. The bottles are then placed into sample coolers where they remain throughout the sampling event. Trip blanks are collected in order to detect any volatile organic contamination that may be introduced from handling during collection, storage, or shipping. Trip blanks are prepared once per day when volatile organic samples are being collected.

Environmental Background Samples. To monitor each pathway for possible radiological contamination, samples of air, water, vegetation, meat, and milk are taken from locations remote from the site for comparison with samples from near-site locations. Samples that are clearly outside site influence show ambient radiological concentrations and serve as backgrounds or “controls,” another form of field quality control sample. Background samples provide baseline information to compare with information from near-site or on-site samples so that site influences can be evaluated.

Quality Control in the Laboratory

More than 10,000 samples were handled as part of site monitoring in 2000. Samples for routine radiological analysis were analyzed on-site, with the rest being sent to subcontract laboratories.

Off-site, subcontract laboratories must maintain a level of quality control as specified in
contracts with WVNS and are required to participate in all applicable crosscheck programs and to maintain all relevant certifications.

In order to monitor the accuracy and precision of data, laboratory quality control practices specific to each analytical method are clearly described in approved references or procedures. Examples of laboratory quality control activities at the WVDP include proper training of analysts, maintaining and calibrating measuring equipment and instrumentation, and processing samples in accordance with specific methods as a means of monitoring laboratory performance.

Analytical instruments and counting systems are calibrated at specified frequencies, and logs of instrument calibration and maintenance are kept. Calibration methods for each instrument are specified in procedures or in manufacturers’ directions. Standards traceable to the National Institute of Standards and Technology (NIST) are used to calibrate counting and test instrumentation.

Laboratory quality control samples consist of three general types: standards (including spikes), used to assess accuracy; blanks, to assess the possibility of contamination; and duplicates, to assess precision.

Standards. Laboratory standards are materials containing known concentrations of an analyte of interest such as a pH buffer or a plutonium-239 counting standard. Standards used at the WVDP for environmental monitoring activities are either NIST-traceable or reference materials from other nationally recognized sources.

At a minimum, one reference standard is analyzed for every twenty sample analyses. The results of the analyses are plotted on control charts, which specify acceptable limits. If the results lie within these limits, then analysis of actual environmental samples may proceed and the results are deemed usable.

Spikes. Another form of standard analysis is a laboratory spike. In a laboratory spike, a known amount of analyte is added to a sample or blank before the sample is analyzed. The percent recovery of the analyte indicates how much of the analyte of interest is being detected in the analysis of actual samples; hence, a spike also is an assessment of the accuracy of the method. Spike recoveries are recorded on control charts with documented acceptance limits.

Blanks. Laboratory blanks are prepared from a matrix similar to that of the sample but known to contain none of the analyte of interest. For instance, distilled water, taken through the same preparatory procedure as a sample, may serve as a laboratory blank for both radiological and chemical analyses of water samples. A positive result for an analyte in a blank indicates that something is wrong with the analysis and that corrective action should be taken. In general, one laboratory blank is processed daily or with each batch of samples for a given analyte.

A special form of laboratory blank for radiological samples is an instrument background count, which is a count taken of a planchet or vial containing no sample. The count serves three purposes: to determine if contamination is present in the counting instrument; to determine if the instrument is responding in an acceptable manner; and to determine the background correction that should be applied when calculating radiological activity in certain samples.

Environmental samples containing little or no radioactivity must be measured with very sensitive instruments. For example, gross alpha and
gross beta measurements must be made with a low-background proportional counter. An instrument background count is taken before each day’s counting or with each batch of twenty samples. Background counts are recorded on control charts with defined acceptance limits. An unacceptable count requires corrective action before analyses can proceed.

Duplicates. Duplicates are analyzed to assess precision in the analytical process. Laboratory duplicates are created by splitting existing samples before analysis; each split is treated as a separate sample. If the analytical process is in control, results for each split should be within documented acceptance criteria.

Crosschecks. WVNS participates in a formal radiological crosscheck program conducted by the U.S. Department of Energy (DOE). The DOE recommends that all organizations performing effluent or environmental monitoring participate in the semiannual Environmental Measurements Laboratory (EML) Quality Assessment Program (QAP). This program is designed to test the quality of environmental measurements being reported to the DOE by its contractors.

An informal crosscheck program uses results from samples of air filters, water, milk, fish, vegetation, and sediments that have been split or separately collected and sent to the New York State Department of Health (NYSDOH) for independent measurement. (Co-located samples are listed in Appendix B of this report.) Results from NYSDOH are compared with WVDP results as an independent verification of environmental monitoring program data.

Crosscheck samples for radiological analyses are analyzed by both the Environmental Laboratory on-site and by the subcontract laboratory. Results from radiological crosschecks are summarized in Appendix J, Tables J-1 and J-2 (pp. J-3 through J-6). A total of 120 radiological crosscheck analyses were performed by or for the WVDP and reported in 2000. One hundred fifteen results (95.8%) were within control limits. Twenty-five of the results were produced by the on-site Environmental Laboratory; 100% were within control limits.

Two nonradiological crosscheck samples (from Environmental Research Associates) for the National Pollutant Discharge Elimination System (NPDES) Discharge Monitoring Report-Quality Assurance Study #20 were analyzed for pH and residual chlorine by the WVDP wastewater facility laboratory. Twenty crosscheck samples provided by NYSDOH for additional parameters were analyzed by an off-site vendor laboratory. Nonradiological crosscheck results are summarized in Appendix J, Table J-3 (p. J-7).

Results from both crosschecks analyzed at the WVDP were within acceptance limits (100%). Of the twenty-one results reported by the vendor laboratory, eighteen were within acceptance limits (85.7%), for a combined 87.0% in control.

WVNS subcontracted laboratories are required to perform satisfactorily on crosschecks, defined as 80% of results falling within control limits. Crosscheck results that fall outside control limits are addressed by formal corrective actions in order to determine any conditions that could adversely affect sample data and to ensure that actual sample results are reliable.

Personnel Training

Anyone performing environmental monitoring program activities is trained in the appropriate procedures and qualified accordingly before carrying out the activity as part of the site environmental monitoring program.
Record Keeping

Control of records is an integral part of the environmental monitoring program. Field data sheets, chain-of-custody forms, requests for analysis, sample-shipping documents, sample logs, bench logs, laboratory data sheets, equipment maintenance logs, calibration logs, training records, crosscheck performance records, data packages, and weather measurements, in addition to other records, are maintained as documentation of the environmental monitoring program. All records pertaining to the program are routinely reviewed and securely stored.

A Laboratory Information Management System (LIMS) is used to log samples, print labels, store and process data, track quality control samples, track samples, produce sampling and analytical worklists, and generate reports. Subcontract laboratories, where possible, provide data in electronic form for direct entry into the LIMS.

Chain-of-Custody Procedures

Chain-of-custody records begin with sample collection. Samples brought in from the field are transferred under signature from the sampler to the sample custodian and are logged at the sample receiving station, after which they are stored in a sample lockup before analysis or shipping. Samples sent off-site for analysis are accompanied by an additional chain-of-custody/analytical request form. Subcontract laboratories are required by contract to maintain internal chain-of-custody records and to store the samples under secure conditions.

Audits and Appraisals

In 2000 the WVNS Quality Assurance and Environmental Affairs departments conducted audits, assessments, surveillances, and inspections. Some of the areas examined were the operation of the Environmental Laboratory fume hoods, testing of the hydraulic conductivity of groundwater, the calibration status of materials and testing equipment, activities pertaining to the discovery of mercury in samples from the liquid waste treatment system, compliance with requirements for stack monitoring, monitoring for nitrogen oxides (NO_x), and packaging of samples being shipped for radiological analysis.

The DOE’s Ohio Field Office conducted a surveillance of the WDP environmental monitoring program in November 2000 and reviewed sampling of ambient air for particulate radioactivity and collection of composite samples from off-site surface waters. Procedures for transferring samples from field personnel to laboratory personnel and maintenance of the chain-of-custody were reviewed. The activities reviewed were found to be in compliance with applicable requirements.

The New York State Department of Environmental Conservation (NYSDEC) inspected the site for compliance with RCRA and SPDES, and the Cattaraugus County Health Department inspected the potable water supply system. No deficiencies were noted. (See also Project Assessment Activities in 2000 [p. ECS-18] in the Environmental Compliance Summary.)

Any corrective actions generated as a result of internal or external program reviews are addressed and tracked to closure.

Self-Assessments

Routine self-assessments of the environmental monitoring program were conducted in 2000. The primary topics addressed by the assess-
ments were compliance with sampling requirements pertaining to the environmental monitoring program; compliance with quality assurance requirements pertaining to the environmental monitoring program; implementation of conduct of operations principles for field activities; and safe practices for using on-site and off-site monitoring and sampling equipment.

No findings were noted, although one observation and several comments regarding possible program improvements were noted and corrective actions were scheduled and implemented. Several good practices were identified. Nothing was found during the course of these routine self-assessments that would compromise the program in general or the data in this report.

Lessons Learned Program

Information from audits, appraisals, and self-assessments are shared with other departments through the WVDP Lessons Learned Program. The WVDP maintains this system in order to identify, document, disseminate, and use this information to improve the safety, efficiency, and effectiveness of all WVNS operations.

Data Management and Data Validation

Information about environmental monitoring program samples is maintained and tracked in the LIMS and includes date and time of collection, chain-of-custody transfer, shipping information, analytical results, and final validation status.

All software used to generate data is verified and validated before use. All analytical data produced in the Environmental Laboratory at the bench level are reviewed and signed off by a qualified person other than the one who performed the analysis. A similar in-house review is contractually required from subcontractor laboratories.

Analytical data from both on- and off-site laboratories are formally validated by the data validation group. As part of the validation procedure, quality control samples analyzed in conjunction with a batch of samples are checked for acceptability. After validation is complete and transcription between hard copy and the LIMS is verified, the sample result is formally approved and released for use in reports.

Data Assessment and Reporting

Radiological and nonradiological data from the environmental monitoring program are evaluated in order to assess the effect, if any, of the site on the environment and the public. Data from each sampling location are compared to applicable standards or background measurements.

- Radiological concentrations in liquid effluent releases or air emissions are compared with DOE derived concentration guides (DCGs) for release of water or air to an unrestricted environment. DCGs for specific radionuclides are listed in Table K-1 (p.K-3).

- Calculated doses from air emissions are compared with National Emissions Standards for Hazardous Air Pollutants (NESHAP) limits.

- Nonradiological releases from liquid effluents covered by the SPDES permit are compared with the limits specified in the permit. (See Table G-1 [pp.G-3 and G-4].)

- Near-site radiological results are compared to results from background locations far from the site.
• Results from surface waters downgradient of the site are compared with results from upgradient locations.

Standard statistical methods are used to compare the data. Where possible, the underlying distribution of the data set is assessed before determining the appropriate statistical tests to be used.

Once the data have been evaluated reports are prepared. Calculations summarizing the data, e.g., summing the total curies released from an effluent point, averaging the annual concentration of a radionuclide at a monitoring point, or pooling confidence intervals from a series of measurements, are made in accordance with formally approved procedures. Final data are reported as described elsewhere in this report. (See Data Reporting [p.1-5] and the section on Scientific Notation at the back of this report.)

Before each technical report is issued, the document, including the data, is comprehensively reviewed by one or more persons who are knowledgeable in the necessary technical aspects of the field of work.

Summary

The multiple levels of scrutiny built into generating, validating, evaluating, and reporting data from the environmental monitoring program ensure that reliable data are reported. The quality assurance elements described in this chapter ensure that environmental monitoring data are consistent, precise, and accurate. The effectiveness of the monitoring program is evidenced by continuing favorable quality assurance assessments.